<jats:title>Abstract</jats:title> <jats:p> The existence of three distinct neutrino flavours, <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> , <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> and <jats:italic>ν</jats:italic> <jats:sub>τ</jats:sub> , is a central tenet of the Standard Model of particle physics <jats:sup>1,2</jats:sup> . Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino, <jats:italic>ν</jats:italic> <jats:sub>s</jats:sub> (refs. <jats:sup>3–9</jats:sup> ). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND) <jats:sup>3</jats:sup> experiment and Mini-Booster Neutrino Experiment (MiniBooNE) <jats:sup>4,5</jats:sup> , consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber <jats:sup>10</jats:sup> in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly <jats:sup>6–8</jats:sup> . This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy between <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> appearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for either <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> flavour transitions or <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> disappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions cannot be explained by introducing a single sterile neutrino state. </jats:p>
14 observation channels used in this analysis. The first 7 channels correspond to the BNB, while the last 7 channels correspond to the NuMI beam. Each set of seven channels is split by reconstructed event type as well as containment in the detector, fully contained (FC) or partially contained (PC). The seven channels in order are $\nu_e$CC FC, $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
Four $\nu_e$CC observation channels, after constraints from 10 $\nu_\mu$CC and NC $\pi^0$ channels. The four channels in order are BNB $\nu_e$CC FC, BNB $\nu_e$CC PC, NuMI $\nu_e$CC FC, and NuMI $\nu_e$CC PC. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
14 channel covariance matrix showing uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties have not been included, but they can be calculated with the Combined Neyman-Pearson (CNP) method. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
The GlueX experiment at Jefferson Lab has observed $p\bar{p}$ and, for the first time, $Λ\barΛ$ and $p\barΛ$ photoproduction from a proton target at photon energies up to 11.6 GeV. The angular distributions are forward peaked for all produced pairs, consistent with Regge-like $t$-channel exchange. Asymmetric wide-angle anti-baryon distributions show the presence of additional processes. In a phenomenological model, we find consistency with a double $t$-channel exchange process where anti-baryons are created only at the middle vertex. The model matches all observed distributions with a small number of free parameters. In the hyperon channels, we observe a clear distinction between photoproduction of the $Λ\barΛ$ and $p\barΛ$ systems but general similarity to the $p\bar{p}$ system. We report both total cross sections and cross sections differential with respect to momentum transfer and the invariant masses of the created particle pairs. No narrow resonant structures were found in these reaction channels. The suppression of $s\bar{s}$ quark pairs relative to $d\bar{d}$ quark pairs is similar to what has been seen in other reactions.
Measured $\frac{d\sigma}{dm_{\Lambda\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{\Lambda \bar{\Lambda}\} p$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{\Lambda\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.05 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 19% (not included in the table), with contributions of 5% from kinematic fitting, 10% from data selection, 5% from flux normalization, 13% from tracking efficiency, 3% from model dependence, and 6% from run-period variations.
Measured $\frac{d\sigma}{dm_{p\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{\Lambda}\} \Lambda$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{p\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.1 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 22% (not included in the table), with contributions of 2% from kinematic fitting, 10% from data selection, 5% from flux normalization, 15% from tracking efficiency, 3% from model dependence, and 10% from run-period variations.
Measured $\frac{d\sigma}{dm_{p\bar{p}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{p}\} p$ including data of $3.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 15 energy bins (each as a column in the table). The observable $m_{p\bar{p}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.044 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 13% (not included in the table), with contributions of 8% from kinematic fitting, 4% from data selection, 5% from flux normalization, 8% from tracking efficiency, 3% from model dependence, and 1% from run-period variations.
The total cross section for Compton scattering off atomic electrons, $γ+e\rightarrowγ'+e'$, was measured using photons with energies between 6.5 and 11.1 GeV incident on a $^9$Be target as part of the PrimEx-eta experiment in Hall D at Jefferson Lab. This is the first measurement of this fundamental QED process within this energy range. The total uncertainties of the cross section, combining the statistical and systematic components in quadrature, averaged to 3.4% across all energy bins. This not only demonstrates the capability of this experimental setup to perform precision cross-section measurements at forward angles but also allows us to compare with state-of-the-art QED calculations.
$\gamma +e^- \rightarrow \gamma + e^-$ total cross section in bins of photon beam energy. The first uncertainties are statistical, and the second are systematic.
The polarization of Lambda, Anti-Lambda, Xi, and Anti-Xi hyperons along the angular momentum of the system has been measured in isobar collisions of Ru+Ru and Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV with the STAR detector at RHIC. The polarization dependence on collision centrality is explored and found to show an increasing trend in more peripheral collisions. Dependencies on transverse momentum and pseudorapidity are investigated for Lambda and Anti-Lambda hyperons, but no significant dependence has been observed. The polarization measurements for Lambda and Anti-Lambda are consistent with each other, indicating little contribution of the spin-magnetic coupling in the observed polarization. The results for Lambda hyperons measurements are qualitatively consistent with hydrodynamic calculations incorporating effects from shear-induced polarization and thermal vorticity, and show no obvious system size dependence in comparison with previous results in Au+Au collisions. For the first time, the dependence of the polarization on the hyperon's emission azimuthal angle with respect to the second harmonic event plane is extracted and shows stronger polarization for the in-plane emitted hyperons at the level of 2.4$\sigma$ significance in 20-50% centrality. The measurements of Xi hyperons polarization via the polarization transfer analysis exhibit a finite positive polarization, 2.9$\sigma$ significance in 20-50% centrality, slightly enhanced compared to the inclusive Lambda polarization.
Resolutions of the first-order event plane from the ZDC-SMDs as a function of collision centrality in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Resolutions of the second-order event plane from the TPC as a function of collision centrality in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Global polarization of $\Lambda$ and $\bar\Lambda$ and their difference as a function of centrality in combined Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].
Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.
Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.
The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.
Partonic collectivity is one of the necessary signatures for the formation of quark-gluon plasma in high-energy nuclear collisions. Number of constituent quarks (NCQ) scaling has been observed for hadron elliptic flow $v_2$ in top energy nuclear collisions at the Relativistic Heavy Ion Collider and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this Letter, a systematic analysis of $v_2$ of $π^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$, and $Λ$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at the Relativistic Heavy Ion Collider, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV
We report precision measurements on cumulants ($C_{n}$) and factorial cumulants ($\kappa_{n}$) of (net-)proton number distributions up to fourth-order in Au+Au collisions from phase II of the Beam Energy Scan program at RHIC. (Anti-)protons are selected at midrapidity ($|y|<0.5$) within a transverse momentum range of $0.4 < p_T < 2.0$ GeV/$c$. The collision energy and centrality dependence of these cumulants are studied over center-of-mass energies $\sqrt{s_{NN}}$ = 7.7 -- 27 GeV. Relative to various non-critical-point model calculations and peripheral collision 70-80% data, the net-proton $C_4/C_2$ measurement in 0-5% collisions shows a minimum around 19.6 GeV for significance of deviation at $\sim2$--$5\sigma$. In addition, deviations from non-critical baselines around the same collision energy region are also seen in proton factorial cumulant ratios, especially in $\kappa_2/\kappa_1$ and $\kappa_3/\kappa_1$. Dynamical model calculations including a critical point are called for in order to understand these precision measurements.
Reference multiplicity distributions (RefMult3 and RefMult3X) for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV along with MC Glauber model fits.
Collision centrality dependence of net-proton cumulants in Au+Au collisions for $\sqrt{s_{NN}}$ = 7.7 - 27 GeV obtained with RefMult3 and RefMult3X centrality definition.
Collision energy dependence of net-proton cumulant ratios and proton factorial cumulant ratios in Au+Au collisions from $\sqrt{s_{NN}}$ = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality. Data from $\sqrt{s_{NN}}$ = 7.7 - 27 GeV are from BES-II (obtained with RefMult3X except 27 GeV where RefMult3 is used). Data from $\sqrt{s_{NN}}$ = 39 - 200 GeV are from BES-I (RefMult3).
We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.
Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.
A measurement of the WZ$γ$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pmν\ell^+\ell^-$, where $\ell$ = e or $μ$, accompanied by an additional photon. The observed (expected) significance of the WZ$γ$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an $\ell$ originating from a tau lepton decay are excluded, to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.
The distributions of the variables used in the simultaneous fit for the nonprompt $l$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the nonprompt $\gamma$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the ZZ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.
Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.