Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, $<\beta\gamma>_{L}$, as a function of the logarithm of beam energy.
No description provided.
No description provided.
No description provided.
We present a measurement of Z0 boson and Drell-Yan production cross sections in p¯p collisions at s=1.8TeV using a sample of 107pb−1 accumulated by the Collider Detector at Fermilab. The Drell-Yan cross section is measured in the mass range of Mμμ>40GeV/c2. We compare the measurements with the predictions of quantum chromodynamics in both leading order and next-to-leading order, incorporating the recent parton distribution functions. The measurements are consistent with the standard model expectations.
The mesured Z0 cross sections for the two running periods and combined.
The mesured Z0 cross section, times the branching ratio Z0 --> MU+ MU- (3.362 PCT) for the two running periods and combined.
The mesured production cross section for the combined data sets for ABS(YRAP) < 1.
We report data on proton-nucleon collisions obtained on Fermilab experiment E711, in which high transverse momentum hadrons are produced near 90° in the proton-nucleon center of mass forming high mass states, using an 800 GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. The data presented cover the mass range from 7 to 15 GeV/c2, the three dihadron charge states ++, +-, and --, and parton-parton scattering angles up to cosθ*=0.50. We present the differential mass dihadron cross section, as well as the angular and charge dependence of the measurement. The cross section as a function of the parton-parton scattering angle for the three charge states is shown to vary linearly with the value of the atomic weight. While the angular distributions are shown to be independent of the target type, a small dependence on the charge state of the distributions is observed. The data are shown to be in good agreement with extrapolations from previous measurements and phenomenological QCD calculations.
Atomic weight dependence as function of the parton-parton scattering angle. This angle (theta cm) is defined as the polar angle between the dihadron axis and the beam director in the rest frame of the massive dihadron state. Cross section parameterised as SIG0(MASS**A). Measurements of A are presented here as POWER(N=A,YN=SIG).
Atomic weight dependence as function of the parton-parton scattering angle. This angle (theta cm) is defined as the polar angle between the dihadron axis and the beam director in the rest frame of the massive dihadron state. Cross section parameterised as SIG0(MASS**A). Measurements of A are presented here as POWER(N=A,YN=SIG).
Errors are statistical only.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.
Results on the cross section for the production of electron pairs in p p collisions at √ s = 630 GeV are presented. The measured value is σ = 405 ± 51 (syst.) ± 84 (syst.) pb, in the invariant mass interval 10 < m < 70 GeV. The results are compared to recent theoretical calculations which include O( α s 2 ) QCD contributions. The comparison of these data with those of lower energy experiments show approximate scaling as a function of the variable √τ = m √s .
No description provided.
Statistical and systematic errors combined.
Statistical errors only.
A sample of 105 e + e − events with an invariant mass greater than 11 GeV/ c 2 produced in pp collisions at a center-of-mass energy of 62.3 GeV is discussed. Cross sections are presented as a function of mass and transverse momentum. The multiplicity, transverse momentum, and azimuthal dependence of associated particles are also studied.
No description provided.
No description provided.
No description provided.
We have studied the processpp→γγ+X at\(\sqrt s= 63 GeV\) GeV in the central rapidity region. We report a positive signal at 96% C.L., a ratio γγ/e+e−=4.0±3.0 when the transverse momentum of each photon is above 2 GeV/c, and a cross-sectiondσ/dydMγγ=(5.5±2.7)×10−34 cm2/GeV when |y|<0.5,4
No description provided.
Data from a study of electron pairs produced in pp collisions (√ s = 5 and 63 GeV) are used to extend measurements of the scaling function down to m /√ s ≈ 0.07 (4.5 < m < 19 GeV). The dilepton continuum can be described by the scaling formula (fx475-1)
No description provided.
No description provided.
An apparatus consisting of a superconducting solenoid magnet, cylindrical drift-chambers, and two arrays of lead-glass Čerenkov counters has been used at the CERN ISR to study the production of e + e − pairs of invariant mass above 6.5 GeV/ c 2 . Cross sections for the continuum and the ϒ family of resonances are presented, as well as the mean transverse momentum 〈 p T 〉 of the electron-positron pairs in the continuum and resonance region.
No description provided.
The production of electron-positron pairs of masses below 1200 MeV/ c 2 and of transverse momentum above 1.8 GeV/ c has been studied in pp collisions at √ s = 53 and 63 GeV. The cross section for ϱ, ω, and φ production are presented. The continuum below 600 MeV/ c 2 is consistent with origination from Dalitz decays of η and ω mesons and from semileptonic decay of D and D mesons.
No description provided.