The PHENIX experiment has measured open heavy-flavor production via semileptonic decay muons over the transverse momentum range 1 < pT < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p+p collisions at ?sNN = 200 GeV. In central d+Au collisions an enhancement (suppression) of heavy-flavor muon production is observed at backward (forward) rapidity relative to the yield in p+p collisions scaled by the number of binary collisions. Modification of the gluon density distribution in the Au nucleus contributes in terms of anti-shadowing enhancement and shadowing suppression; however, the enhancement seen at backward rapidity exceeds expectations from this effect alone. These results, implying an important role for additional cold nuclear matter effects, serves as a key baseline for heavy-quark measurements in A+A collisions and in constraining the magnitude of charmonia breakup effects at the Relativistic Heavy Ion Collider and the Large Hadron Collider.
Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).
Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).
Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).
A search is presented for direct chargino production based on a disappearing-track signature using 20.3 fb-1 of proton-proton collisions at sqrt(s) = 8 TeV collected with the ATLAS experiment at the LHC. In anomaly-mediated supersymmetry breaking (AMSB) models, the lightest chargino is nearly mass-degenerate with the lightest neutralino and its lifetime is long enough to be detected in the tracking detectors by identifying decays that result in tracks with no associated hits in the outer region of the tracking system. Some models with supersymmetry also predict charginos with a significant lifetime. This analysis attains sensitivity for charginos with a lifetime between 0.1 ns and 10 ns, and significantly surpasses the reach of the LEP experiments. No significant excess above the background expectation is observed for candidate tracks with large transverse momentum, and constraints on chargino properties are obtained. In the AMSB scenarios, a chargino mass below 270 GeV is excluded at 95% confidence level.
The pT distribution of disappearing-track candidates.
Observed CLs contour in the ( M(CHARGINO), TAU(CHARGINO) ) space for tan(beta) = 5 and mu > 0.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty in the ( M(CHARGINO), TAU(CHARGINO) ) space for tan(beta) = 5 and mu > 0.
The $\jpsi$ $\pt$ spectrum and nuclear modification factor ($\raa$) are reported for $\pt < 5 \ \gevc$ and $|y|<1$ from 0\% to 60\% central Au+Au and Cu+Cu collisions at $\snn = 200 \ \gev$ at STAR. A significant suppression of $\pt$-integrated $\jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $\raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $\pt$. The data are compared to high-$\pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $\pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.
The invariant yield versus transverse momentum for |y| < 1 in 0-20% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).
The invariant yield versus transverse momentum for |y| < 1 in 20-40% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).
The invariant yield versus transverse momentum for |y| < 1 in 40-60% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).
High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.
Different physical quantities characterizing $d$+Au collisions, and the bias-factor corrections, for nine PHENIX centrality bins.
Different physical quantities characterizing $d$+Au collisions, and the bias-factor corrections, for nine PHENIX centrality bins.
Different physical quantities characterizing $d$+Au collisions, and the bias-factor corrections, for four PHENIX centrality bins.
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}$=200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu$+$Cu collisions an enhanced production of electrons is observed relative to $p$$+$$p$ collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/$c$ the nuclear modification factor is $R_{AA}$$\sim$1.4. As the system size increases to more central Cu$+$Cu collisions, the enhancement gradually disappears and turns into a suppression. For $p_T>3$ GeV/$c$, the suppression reaches $R_{AA}$$\sim$0.8 in the most central collisions. The $p_T$ and centrality dependence of $R_{AA}$ in Cu$+$Cu collisions agree quantitatively with $R_{AA}$ in $d+$Au and Au$+$Au collisions, if compared at similar number of participating nucleons $\langle N_{\rm part} \rangle$.
The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.
The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.
The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.
A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.
Average values of the number of participating nucleons (Npart), number of binary collisions (Ncoll), and the nuclear overlap function (TAA) for the centrality intervals used in the jet analysis.
Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 0-10%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.
Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 10-30%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.
A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The results are based on an integrated luminosity of 4.6 fb-1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity and transverse energy in the kinematic range between 100 GeV and 1000 GeV and in the regions of pseudorapidity less than 1.37 and between 1.52 and 2.37. The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of transverse energy and pseudorapidity.
Measured inclusive prompt photon production cross section in the pseudorapidity range |eta^gamma| < 1.37 as a function of E_T^gamma with statistical and systematic uncertainties.
Measured inclusive prompt photon production cross section in the pseudorapidity range |eta^gamma| 1.52-2.37 as a function of E_T^gamma with statistical and systematic uncertainties.
Measured inclusive prompt photon production cross section in the ET_gamma region > 100 GeV as a function of |eta(gamma)| with statistical and systematic uncertainties.
We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.
The fully-corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $p$+$p$.
The fully corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $d$+Au.
$J_{dA}$ plotted as a function of $\Delta\phi$.
We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $\sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/\psi$ polarization measurement should help to distinguish between different models of the $J/\psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/\psi$ polarization. In this analysis, $J/\psi$ polarization is studied in the helicity frame. The polarization parameter $\lambda_{\theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/\psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.
Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $2 < p_{T}^{J/\psi} < 3$ GeV/c
Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $3 < p_{T}^{J/\psi} < 4$ GeV/c
Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $4 < p_{T}^{J/\psi} < 6$ GeV/c
This Letter presents a search for quantum black-hole production using 20.3 inverse fb of data collected with the ATLAS detector in pp collisions at the LHC at sqrt(s) = 8 TeV. The quantum black holes are assumed to decay into a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
The combined 95% CL upper limits on the cross section times branching fraction (SIG*BR) for Quantum Black Holes decaying to a lepton and jet, as a function of the threshold mass, Mth.
Numbers of observed events and expected background events for electron+jet channel, along with acceptance (A), experimental efficiency (EPSILON), cumulative efficiency (A*EPSILON), total cross section (SIG*BR) and 95% CL observed upper limit, for various values of the threshold mass, Mth. The leading order cross sections have a statistical precision of the order of 1%. The uncertainties on the predicted background include both statistical and systematic components. Acceptance is calculated using generator-level quantities by imposing selection criteria that apply directly to phase space (electron/jet eta, electron/jet pT, Delta(eta), Delta(phi), <eta>, and Minv). All other selections, which in general correspond to event and object quality criteria, are used to calculate the efficiency on the events included in the acceptance. The cumulative signal efficiency is the product of the acceptance and experimental efficiency.
Numbers of observed events and expected background events for muon+jet channel, along with acceptance (A), experimental efficiency (EPSILON), cumulative efficiency (A*EPSILON), total cross section (SIG*BR) and 95% CL observed upper limit, for various values of the threshold mass, Mth. The leading order cross sections have a statistical precision of the order of 1%. The uncertainties on the predicted background include both statistical and systematic components. Acceptance is calculated using generator-level quantities by imposing selection criteria that apply directly to phase space (muon/jet eta, muon/jet pT, Delta(eta), Delta(phi), <eta>, and Minv). All other selections, which in general correspond to event and object quality criteria, are used to calculate the efficiency on the events included in the acceptance. The cumulative signal efficiency is the product of the acceptance and experimental efficiency.