Elliptic flow in Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Ackermann, K.H. ; Adams, N. ; Adler, C. ; et al.
Phys.Rev.Lett. 86 (2001) 402-407, 2001.
Inspire Record 533414 DOI 10.17182/hepdata.93232

Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

2 data tables

Elliptic flow as a function of centrality defined as nch/nmax. Also given is epsilon, the initial space eccentricity of the overlap region, as well as the cumulative fraction of events starting with the most central. From the results of the study of non-flow contributions by different subevent selections and the maximum magnitudes of the first and higher-order harmonics, we estimate a systematic error for v2 of about 0.007, with somewhat smaller uncertainty for the mid-centralities where the resolution of the event plane is high.

Elliptic flow as a function of transverse momen-tum for minimum bias events


Mid-rapidity anti-proton to proton ratio from Au + Au collisions at s(N N)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 86 (2001) 4778, 2001.
Inspire Record 555818 DOI 10.17182/hepdata.98921

We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $<p_t<$ 1.0 GeV/$c$, the ratio is essentially independent of either transverse momentum or rapidity, with an average of $0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)}$ for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the $p$-$\pb$ pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.

4 data tables

pbar over p ratio vs. pt

pbar over p ratio vs. rapidity (y)

pbar over p ratio vs. centrality $(n_{ch}/n_{max})$

More…

Measurement of inclusive antiprotons from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 262302, 2001.
Inspire Record 564369 DOI 10.17182/hepdata.98922

We report the first measurement of inclusive antiproton production at mid-rapidity in Au+Au collisions at 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25 < pT < 0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.

4 data tables

Tranverse mass distributions for different centralities

Antiproton fit parameters and yields. Systematic errors are 10%.

Antiproton fit parameters and yields. Systematic errors are 10%.

More…

Mid-rapidity Lambda and Antilambda production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 092301, 2002.
Inspire Record 584141 DOI 10.17182/hepdata.99050

We report the first measurement of strange ($\Lambda$) and anti-strange ($\bar{\Lambda}$) baryon production from $\sqrt{s_{_{NN}}}=130$ GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at mid-rapidity are presented as a function of centrality. The yield of $\Lambda$ and $\bar{\Lambda}$ hyperons is found to be approximately proportional to the number of negative hadrons. The production of $\bar{\Lambda}$ hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models.

5 data tables

Transverse mass distributions of $\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

Transverse mass distributions of $\bar\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

The mid-rapidity $\bar\Lambda$ ($|y|<0.5$) transverse momentum distribution from the top $5\%$ most central collisions. For comparison the distributions for negative hadrons ($d^{2}N/(2 \pi p_{T})dp_{T}d\eta$, $|\eta|<0.1$) and anti-protons ($|y|<0.1$) for the similar centrality bin are included. Only statistical errors are listed. Statistical errors are less than the size of the data points. Combined systematic errors on hyperons estimated to be $10\%$. Correlated systematic errors for negative hadrons estimated to be $6\%$. Systematic errors on antiprotons are $8\%$ point-to-point and $10\%$ in the overall normalization.

More…

K*(892)0 production in relativistic heavy ion collisions at S(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 061901, 2002.
Inspire Record 587235 DOI 10.17182/hepdata.54898

We report the first observation of $K^{\star}(892)^{0}\to\pi K$ in relativistic heavy ion collisions. The transverse momentum spectrum of $(K^{\star0}+\bar{K}^{\star0})/2$ from central Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV is presented. The ratios of the $K^{\star0}$ yield derived from these data to the yields of negative hadrons, charged kaons, and $\phi$ mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable $e^{+}e^{-}$, $pp$, and $\bar{p}p$ results. The data indicate no dramatic reduction of $K^{\star0}$ production in relativistic heavy ion collisions despite expected losses due to rescattering effects.

4 data tables

Transverse mass spectrum of K*0 with YRAP = -0.5 to 0.5 for the 14 PCT most central interactions. Numerical values requested from the authors.

K*0 to negative hadron ratio using hadron data from Adler et al PRL 87,112303(2001).

K*0 to kaon ratio using STAR kaon data.

More…

Azimuthal anisotropy of K0(S) and Lambda + anti-Lambda production at mid-rapidity from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 127 (2021) 089901, 2021.
Inspire Record 587154 DOI 10.17182/hepdata.102318

We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.

8 data tables

$v_2$ of $K_s^0$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $K_s^0$ as a function of $p_T$ for 11-45% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $\Lambda+\bar{\Lambda}$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

More…

Coherent rho0 production in ultra-peripheral heavy ion collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 272302, 2002.
Inspire Record 588142 DOI 10.17182/hepdata.102319

The STAR collaboration reports the first observation of exclusive rho^0 photo-production, AuAu->AuAu rho^0, and rho^0 production accompanied by mutual nuclear Coulomb excitation, AuAu->Au*Au*rho^0, in ultra-peripheral heavy-ion collisions. The rho^0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt(s_NN)=130GeV agree with theoretical predictions treating rho^0 production and Coulomb excitation as independent processes.

3 data tables

Differential cross section $d\sigma(\gamma Au \rightarrow \rho Au)/dt$ of $\rho^0$ candidates

Differential cross section $d\sigma/dM_{\pi\pi}$ for two-track (xn,xn) events with pair $p_T<150$ MeV/$c$

Total background in the differential cross section $d\sigma/dM_{\pi\pi}$


Kaon production and kaon to pion ratio in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Lett.B 595 (2004) 143-150, 2004.
Inspire Record 588342 DOI 10.17182/hepdata.98923

Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at $\snn$=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are $K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)}$ and $K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)}$ for the most central collisions. The $K^+/\pi^-$ ratio is lower than the same ratio observed at the SPS while the $K^-/\pi^-$ is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and $\bar{\rm p}$+p collision data at similar energies.

6 data tables

Transverse mass distributions for different centralities: dE/dx identified charged kaons. K+

Transverse mass distributions for different centralities: dE/dx identified charged kaons. K-

Transverse mass distributions for different centralities: Neutral Kaons.

More…

Elliptic flow from two- and four-particle correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 034904, 2002.
Inspire Record 587825 DOI 10.17182/hepdata.98926

Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.

30 data tables

Correlation between the event plane angles determined from pairs of subevents partitioned randomly (circles), partitioned with opposite signs of pseudorapidity (squares) and partitioned with opposite signs of charge (crosses). The correlation is plotted as a function of centrality, namely, charged particle multiplicity $n_{ch}$ divided by the maximum observed charged multiplicity, $n_{max}$.

The event plane resolution for full events as a function of centrality, using randomly partitioned subevents with (circles) and without (triangles) $p_{t}$ weight.

Elliptic flow signal $v_{2}$ as a function of centrality, from study of the correlation between particle pairs consisting of randomly chosen particles (circles), particles with opposite signs of charge (crosses), particles with the same signs of charge (triangles), and particles with opposite signs of pseudorapidity (squares).

More…

Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 032301, 2003.
Inspire Record 588226 DOI 10.17182/hepdata.98579

Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.

4 data tables

$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.

$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).

High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).

More…