Date

Measurement of Differential Distributions of $B \to D^* \ell \bar \nu_\ell$ and Implications on $|V_{cb}|$

The Belle collaboration Prim, M.T. ; Bernlochner, F. ; Metzner, F. ; et al.
Phys.Rev.D 108 (2023) 012002, 2023.
Inspire Record 2624324 DOI 10.17182/hepdata.137767

We present a measurement of the differential shapes of exclusive $B\to D^* \ell \bar{\nu}_\ell$ ($B = B^-, \bar{B}^0 $ and $\ell = e, \mu$) decays with hadronic tag-side reconstruction for the full Belle data set of $711\,\mathrm{fb}^{-1}$ integrated luminosity. We extract the Caprini-Lellouch-Neubert (CLN) and Boyd-Grinstein-Lebed (BGL) form factor parameters and use an external input for the absolute branching fractions to determine the Cabibbo-Kobayashi-Maskawa matrix element and find $|V_{cb}|_\mathrm{CLN} = (40.1\pm0.9)\times 10^{-3}$ and $|V_{cb}|_\mathrm{BGL} = (40.6\pm 0.9)\times 10^{-3}$ with the zero-recoil lattice QCD point $\mathcal{F}(1) = 0.906 \pm 0.013$. We also perform a study of the impact of preliminary beyond zero-recoil lattice QCD calculations on the $|V_{cb}|$ determinations. Additionally, we present the lepton flavor universality ratio $R_{e\mu} = \mathcal{B}(B \to D^* e \bar{\nu}_e) / \mathcal{B}(B \to D^* \mu \bar{\nu}_\mu) = 0.990 \pm 0.021 \pm 0.023$, the electron and muon forward-backward asymmetry and their difference $\Delta A_{FB}=0.022\pm0.026\pm 0.007$, and the electron and muon $D^*$ longitudinal polarization fraction and their difference $\Delta F_L^{D^*} = 0.034 \pm 0.024 \pm 0.007$. The uncertainties quoted correspond to the statistical and systematic uncertainties, respectively.

8 data tables

Bins used in the average spectrum (equivalent to the B0 case binning)

Bins for each data point for B0 and B+ cases separately.

The fully averaged measured shape. The 40 entries correspond to 10 bins in w, cosThetaL, cosThetaV, and chi. For the binning see the file 'Binning.yaml'.

More…

Version 2
Search for a new Z' gauge boson in $4\mu$ events with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 090, 2023.
Inspire Record 2625676 DOI 10.17182/hepdata.130818

This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.

29 data tables

Summary of the chosen $Z'$ hypotheses and corresponding coupling, width, and cross-section (calculated at LO accuracy in QCD) at each mass point.

The $Z'$ signal event selection efficiencies compared to the events passing the previous cut level for several representative mass points. The overall signal efficiencies are the products of the 4$\mu$ MC filter and the combined event selection efficiencies.

The selected 4$\mu$ events in data and the estimated backgrounds and their combined statistical and systematic uncertainties.

More…

Determination of the strong coupling constant from transverse energy$-$energy correlations in multijet events at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 085, 2023.
Inspire Record 2625697 DOI 10.17182/hepdata.135073

Measurements of transverse energy$-$energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 $\mbox{fb\(^{-1}\)}$ of proton$-$proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers $Q$. The strong coupling constant $\alpha_s$ is extracted differentially as a function of $Q$, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy$-$energy correlation distributions across different kinematic regions yields a value of $\alpha_\mathrm{s}(m_Z) = 0.1175 \pm 0.0006 \mbox{ (exp.)} ^{+0.0034}_{-0.0017} \mbox{ (theo.)}$, while the global fit to the asymmetry distributions yields $\alpha_{\mathrm{s}}(m_Z) = 0.1185 \pm 0.0009 \mbox{ (exp.)} ^{+0.0025}_{-0.0012} \mbox{ (theo.)}$.

50 data tables

Particle-level TEEC results

Particle-level TEEC results for the first HT2 bin

Particle-level TEEC results for the second HT2 bin

More…

Production of pions, kaons and protons as a function of the transverse event activity in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 027, 2023.
Inspire Record 2626034 DOI 10.17182/hepdata.140124

The production of $\pi^\pm$, ${\rm K}^\pm$, and $(\overline{\rm p})$p is measured in pp collisions at $\sqrt{s}=13$ TeV in different topological regions. Particle transverse momentum ($p_{\rm T}$) spectra are measured in the ``toward'', ``transverse'', and ``away'' angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, $R_{\rm T}=N_{\rm T}/\langle N_{\rm T}\rangle$, is used to group events according to their UE activity, where $N_{\rm T}$ is the measured charged-particle multiplicity per event in the transverse region and $\langle N_{\rm T}\rangle$ is the mean value over all the analysed events. The first measurements of identified particle $p_{\rm T}$ spectra as a function of $R_{\rm T}$ in the three topological regions are reported. The yield of high transverse momentum particles relative to the $R_{\rm T}$-integrated measurement decreases with increasing $R_{\rm T}$ in both the toward and away regions, indicating that the softer UE dominates particle production as $R_{\rm T}$ increases and validating that $R_{\rm T}$ can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing $R_{\rm T}$. This hardening follows a mass ordering, being more significant for heavier particles. The $p_{\rm T}$-differential particle ratios $({\rm p+\overline{p}})/(\pi^+ +\pi^-)$ and $({\rm K^+ +K^-})/(\pi^+ +\pi^-)$ in the low UE limit $(R_{\rm T}\rightarrow 0)$ approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce ${\rm e^+ e^-}$ results.

128 data tables

$N_{\mathrm{T}}$ probability distribution in the transverse region using events with leading particles $(p_{\mathrm{T}}^{\mathrm{leading}} \geq 5~\mathrm{GeV}/c)$ in the pseudorapidity interval $|\eta|<0.8$ in pp collisions at $\sqrt{s} = 13~\mathrm{TeV}$.

$R_{\mathrm{T}}$ probability distribution in the transverse region using events with leading particles $(p_{\mathrm{T}}^{\mathrm{leading}} \geq 5~\mathrm{GeV}/c)$ in the pseudorapidity interval $|\eta|<0.8$ in pp collisions at $\sqrt{s} = 13~\mathrm{TeV}$.

$\pi^{+}+\pi^{-}$ transverse momentum spectrum for events with $0 \leq R_{\mathrm{T}} < 5$ in the Toward region in pp collisions at $\sqrt{s} = 13~\mathrm{TeV}$.

More…

Version 2
Search for exclusive Higgs and $Z$ boson decays to $\omega\gamma$ and Higgs boson decays to $K^{*}\gamma$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 847 (2023) 138292, 2023.
Inspire Record 2626041 DOI 10.17182/hepdata.136515

Searches for the exclusive decays of the Higgs boson to an $\omega$ meson and a photon or a $K^{*}$ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous $Z$ boson decay to an $\omega$ meson and a photon, are performed with a $pp$ collision data sample corresponding to integrated luminosities of up to 134 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow\omega\gamma)< 5.5\times 10^{-4}$, ${\cal B}(H\rightarrow K^{*}\gamma)< 2.2\times10^{-4}$ and ${\cal B}(Z\rightarrow \omega\gamma)<3.9\times 10^{-6}$. The limits for $H\rightarrow \omega\gamma$ and $Z\rightarrow \omega\gamma$ are 370 times and 140 times the Standard Model expected values, respectively. The result for $Z\rightarrow \omega\gamma$ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP.

2 data tables

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-4}$, respectively.

Expected and observed branching fraction limits at the 95% CL for $H/Z\rightarrow \omega\gamma$ and $H\rightarrow K^{*}\gamma$.


Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…

Extraction of neutron density distributions from high-statistics coherent elastic neutrino-nucleus scattering data

Sierra, D. Aristizabal ;
Phys.Lett.B 845 (2023) 138140, 2023.
Inspire Record 2628373 DOI 10.17182/hepdata.150020

Forthcoming fixed-target coherent elastic neutrino-nucleus scattering experiments aim at measurements with $\cal{O}(\text{tonne})$-scale detectors and substantially reduced systematic and statistical uncertainties. With such high quality data, the extraction of point-neutron distributions mean-square radii requires a better understanding of possible theoretical uncertainties. We quantify the impact of single-nucleon electromagnetic mean-square radii on the weak-charge form factor and compare results from weak-charge form factor parametrizations and weak-charge form factor decompositions in terms of elastic vector proton and neutron form factors, including nucleon form factors $Q$-dependent terms up to order $Q^2$. We assess as well the differences arising from results derived using weak-charge form factor decompositions in terms of elastic vector proton and neutron form factors and a model-independent approach based solely on the assumption of spherically symmetric nuclear ground state. We demonstrate the impact of the main effects by assuming pseudo-data from a one-tonne LAr detector and find that, among the effects and under the assumptions considered in this paper, weak-charge form factor parametrizations and weak-charge form factor decompositions in terms of elastic vector proton and neutron form factors enable the extraction of the $^{40}\text{Ar}$ point-neutron distribution mean-square radius with a $\sim 15\%$ accuracy. With a substantial reduction of the beam-related neutron and steady-state backgrounds a $\sim 1\%$ precision extraction seems feasible, using either of the two approaches.

2 data tables

$z_{\parallel}^{\rm{ch}}$ for $\Lambda_{\rm{c}}^{+}$-tagged jets and D$^{0}$-tagged jets in the $p_{\rm{T}}^{\rm{jet\text{ }ch}}$: 7-15 GeV/$c$ interval.

$z_{\parallel}^{\rm{ch}}$ ratio of $\Lambda_{\rm{c}}^{+}$-tagged jets and D$^{0}$-tagged jets in the $p_{\rm{T}}^{\rm{jet\text{ }ch}}$: 7-15 GeV/$c$ interval.


Exploring the non-universality of charm hadronisation through the measurement of the fraction of jet longitudinal momentum carried by $\Lambda_{\rm c}^+$ baryons in pp collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 109 (2024) 072005, 2024.
Inspire Record 2628372 DOI 10.17182/hepdata.151164

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by $\Lambda_{\rm c}^{+}$ baryons, $z^{\mathrm{ch}}_\mathrm{||}$, in hadronic collisions. The results are obtained in proton-proton (pp) collisions at $\sqrt{s}=13$ TeV at the LHC, with $\Lambda_{\rm c}^{+}$ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of $3 \leq p_{\rm T}^{\Lambda_{\rm c}^{+}} < 15$ GeV/$c$ and $7 \leq p_{\rm T}^{\rm jet\;ch} < 15$ GeV/$c$, respectively. The $z^{\mathrm{ch}}_\mathrm{||}$ distribution is compared to a measurement of ${\rm D}^0$-tagged charged jets in pp collisions as well as to PYTHIA 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronisation models which include colour correlations beyond leading-colour in the string formation.

2 data tables

$z_{\parallel}^{\rm{ch}}$ for $\Lambda_{\rm{c}}^{+}$-tagged jets and D$^{0}$-tagged jets in the $p_{\rm{T}}^{\rm{jet\text{ }ch}}$: 7-15 GeV/$c$ interval.

$z_{\parallel}^{\rm{ch}}$ ratio of $\Lambda_{\rm{c}}^{+}$-tagged jets and D$^{0}$-tagged jets in the $p_{\rm{T}}^{\rm{jet\text{ }ch}}$: 7-15 GeV/$c$ interval.


Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Measurement of the production of a $W$ boson in association with a charmed hadron in $pp$ collisions at $\sqrt{s} = 13\,\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 032012, 2023.
Inspire Record 2628732 DOI 10.17182/hepdata.136060

The production of a $W$ boson in association with a single charm quark is studied using 140 $\mathrm{fb}^{-1}$ of $\sqrt{s} = 13\,\mathrm{TeV}$ proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The charm quark is tagged by a charmed hadron, reconstructed with a secondary-vertex fit. The $W$ boson is reconstructed from an electron/muon decay and the missing transverse momentum. The mesons reconstructed are $D^{\pm} \to K^\mp \pi^\pm \pi^\pm$ and $D^{*\pm} \to D^{0} \pi^\pm \to (K^\mp \pi^\pm) \pi^\pm$, where $p_{\text{T}}(e, \mu) > 30\,\mathrm{GeV}$, $|\eta(e, \mu)| < 2.5$, $p_{\text{T}}(D) > 8\,\mathrm{GeV}$, and $|\eta(D)| < 2.2$. The integrated and normalized differential cross-sections as a function of the pseudorapidity of the lepton from the $W$ boson decay, and of the transverse momentum of the meson, are extracted from the data using a profile likelihood fit. The measured fiducial cross-sections are $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{+}) = 50.2\pm0.2\,\mathrm{(stat.)}\,^{+2.4}_{-2.3}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{-}) = 48.5\pm0.2\,\mathrm{(stat.)}\,^{+2.3}_{-2.2}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{*+}) = 51.1\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$, and $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{*-}) = 50.0\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. The ratio of charm to anti-charm production cross-sections is studied to probe the $s$-$\bar{s}$ quark asymmetry and is found to be $R_c^\pm = 0.971\pm0.006\,\mathrm{(stat.)}\pm0.011\,\mathrm{(syst.)}$.

23 data tables

Measured fiducial cross-sections times the single-lepton-flavor W boson branching ratio.

Measured cross section ratios for the W+D production. The $R_{c}(D^{(*)})$ observable is obtained by combining the individual measurements of $R_{c}(D^{+})$ and $R_{c}(D^{*+})$ as explained in the text. The displayed cross sections are integrated over each differential bin.

Measured $p_{\mathrm{T}}(D^{+})$ differential fiducial cross-section times the single-lepton-flavor W boson branching ratio in the $W^{-}+D^{+}$ channel. The last $p_{\mathrm{T}}$ bin has no upper bound. The displayed cross sections are integrated over each differential bin.

More…