Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.
The double differential cross section for the 96-97 E+ P NC scattering data.
The double differential cross section for the 96-97 E+ P NC scattering data.
The double differential cross section for the 96-97 E+ P NC scattering data.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.
Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.
UNTAGGED DATA.
TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.
UNTAGGED DATA.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Proton structure function F2 at Q**2 = 25 GeV**2.
Proton structure function F2 at Q**2 = 35 GeV**2.
Proton structure function F2 at Q**2 = 45 GeV**2.
The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parametrizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200A GeV incident energy, respectively, σ is found to be independent of the size of the interacting system at fixed energy. A novel way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined.
No description provided.
NUCLEUS IS AGBR, CENTRAL EVENTS.
No description provided.
The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.
No description provided.
No description provided.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.