Date

A Precise Measurement of the Muon Neutrino-NucleonInclusive Charged Current Cross-Section off an IsoscalarTarget in the Energy Range\boldmath{$2.5 < E_\nu < 40$}~GeV by NOMAD

The NOMAD collaboration Wu, Q. ; Mishra, Sanjib Ratan ; Godley, A. ; et al.
Phys.Lett.B 660 (2008) 19-25, 2008.
Inspire Record 767013 DOI 10.17182/hepdata.50629

We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range $2.5 \leq E_\nu \leq 40$ GeV. The significance of this measurement is its precision, $\pm 4$% in $2.5 \leq E_\nu \leq 10$ GeV, and $\pm 2.6$% in $10 \leq E_\nu \leq 40$ GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

1 data table

Inclusive muon-neutrino charged current cross section.


The Q**2-dependence of the neutron spin structure function g2(n) at low Q**2.

Kramer, K. ; Armstrong, D.S. ; Averett, T.D. ; et al.
Phys.Rev.Lett. 95 (2005) 142002, 2005.
Inspire Record 684137 DOI 10.17182/hepdata.31614

We present the first measurement of the Q^2-dependence of the neutron spin structure function g_2^n at five kinematic points covering 0.57 (GeV/c)^2 <= Q^2 <= 1.34 (GeV/c)^2 at x~0.2. Though the naive quark-parton model predicts g_2=0, non-zero values for g_2 occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses or orbital angular momentum. When scattering from a non-interacting quark, $g_2^n$ can be predicted using next-to-leading order fits to world data for g_1^n. Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q^2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g_1^n are consistent with next-to-leading order fits to world data.

1 data table

Measured values of G1N ang G2N.


A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 621 (2002) 3-34, 2002.
Inspire Record 566751 DOI 10.17182/hepdata.48925

A study of strange particle production in muon neutrino charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles K0s, Lambda, AntiLambda have been measured. Mean multiplicities are reported as a function of the event kinematic variables Enu, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K0s and Lambda in the final state have been analyzed. Clear signals corresponding to K*+-, Sigma*+-, Xi- and Sigma0 have been observed.

20 data tables

Measured yields of the neutral strange particles measured in this analysis.The second line (marked *) is a recalculation taking into account contributions from both primary and secondary V0. The values for K0 are the K0S rates multipl ied by 2.

Measured yields as a function of E, the neutrino energy.

Measured yields as a function of W**2.

More…

Measurement of the Antilambda polarization in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 605 (2001) 3-14, 2001.
Inspire Record 554759 DOI 10.17182/hepdata.48928

We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

2 data tables

Lambdabar polarization in regions of Feynman X (XL).

Lambdabar polarization in regions of the Bjorken scaling variable X.


Determination of the Neutral Current Chiral Coupling Constants From $U(2)_L$, $U(2)_R$, $d(2)_L$ and $d(2)_R$ From a Neutrino and Anti-neutrino Deuterium Experiment

The WA25 collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Nucl.Phys.B 307 (1988) 1-18, 1988.
Inspire Record 260699 DOI 10.17182/hepdata.33342

The ratios of neutral-current to charged-current cross sections of v and v interactions, seperately, on proton and neutron targets have been measured. The Big European Bubble Chamber (BEBC), filled with deuterium and equipped with an external muon identifier (EMI) and an internal picket fence (IPF), was exposed to the CERN SPS (anti)neutrino wide-band beam. The measured ratios are R v p= = 0.405 ± 0.024 ± 0.021 , R v n = 0.243 ± 0.013 ± 0.016, R v p = 0.301 ± 0.027 ± 0.024 and R v n = 0.490 ± 0.050 ± 0.037 . (The first error is statistical and the second systematic). From combinations of these ratios the following neutral-current chiral coupling constants have been determined: u L 2 = 0.099 ± 0.018 ± 0.008, d L 2 = 0.202 ± 0.020 ± 0.019, u R 2 = 0.020 ± 0.016 ± 0.009 and d R 2 = 0.002 ± 0.017 ± 0.010. These results agree with the predictions of the SU(2) × U(1) standard electroweak model. Assuming ϱ = 1, the corresponding value of sin 2 θ w is found to be 0.247 ± 0.029, whereas a two-parameter fit to the data yields sin 2 θ w = 0.243 ± 0.046 and ϱ = 0.996 ± 0.041.

8 data tables

No description provided.

No description provided.

No description provided.

More…

A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 36 (1987) 611, 1987.
Inspire Record 249672 DOI 10.17182/hepdata.15697

The cross-section ratio of neutral-current and charged-current semileptonic interactions of muon-neutrinos on isoscalar nuclei has been measured with the result:Rv=0.3093±0.0031 for hadronic energy larger than 4 GeV. From this ratio we determined the electroweak mixing angle sin2θW, wheremc is the charm-quark mass in GeV/c2. Comparison with direct measurements ofmw andmz determines the radiative shift of the intermediate boson mass Δr=0.077±0.025(exp.)±0.038(syst.), in agreement with the prediction. Assuming the validity of the electroweak standard theory we determined ϱ=0.990−0.013(mc−1.5)±0.009(exp.)±0.003(theor.).

3 data tables

No description provided.

No description provided.

STATISTICAL ERROR IN THE VALUE CITED IS REDUCING, WHEN CUT IS MORE STRINGENT?.


Measurement of the Neutral Current Coupling Constants in Neutrino and Anti-neutrinos Interactions With Deuterium

The Amsterdam-Bergen-Bologna-Padua-Pisa-Saclay-Turin collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Phys.Lett.B 133 (1983) 129, 1983.
Inspire Record 191539 DOI 10.17182/hepdata.30635

We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Neutral Current to Charged Current Ratio for Anti-neutrinos Proton Inclusive Scattering

Carmony, D.D. ; Carman, T.S. ; Barnes, V.E. ; et al.
Phys.Rev.D 26 (1982) 2965, 1982.
Inspire Record 11799 DOI 10.17182/hepdata.23944

The Fermilab wide-band antineutrino beam incident on the hydrogen-filled 15-foot bubble chamber was used to study ν¯p neutral-current interactions. The u=x(1−y) distribution is presented for both the neutral- and the charged-current data sample. Fitting the neutral-current u distribution to the prediction of a simple quark-parton model measures the Weinberg angle. By using recent measurements of the neutral-to-charged-current cross-section ratio for νp interactions (Rp), we find the corresponding ratio for ν¯p interactions (R¯p) to be 0.36±0.06.

3 data tables

No description provided.

No description provided.

No description provided.


Forward Produced Protons and Anti-protons in Deep Inelastic Muon Proton Scattering

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 103 (1981) 388, 1981.
Inspire Record 166178 DOI 10.17182/hepdata.31185

A significant rate of forward proton and antiproton production has been observed in 120 and 280 GeV muon-proton scattering. The z and p T 2 distributions are presented. The dependence of the normalized production cross section on the muon variables x and Q 2 is studied.

2 data tables

No description provided.

No description provided.


Measurement of Quark Momentum Distributions in the Proton Using an Anti-neutrino Probe

Barnes, V.E. ; Carman, T.S. ; Carmony, D.D. ; et al.
Phys.Rev.D 25 (1982) 1-21, 1982.
Inspire Record 166272 DOI 10.17182/hepdata.24027

We present the results of a study of the inclusive reaction ν¯p→μ+X0 for antineutrino energies from 5 to 150 GeV. The data were obtained by exposing the Fermi National Accelerator Laboratory hydrogen-filled 15-foot bubble chamber to a wide-band antineutrino beam. This is the first high-energy antineutrino experiment in which a pure proton target was used. The experimental problems of selecting the required sample of charged-current antineutrino-induced events are discussed in detail. A Monte Carlo simulation of the experiment is used to provide correction factors to the measured distributions. A measurement of the x dependence of the inelasticity (y) distributions gives the proton structure functions F2ν¯p(x) and xF3ν¯p(x) up to an overall normalization constant. When expressed in terms of the quark-parton model, the quark distributions u(x) and d¯(x)+s¯(x) are determined. The results for u(x) are found to be in excellent agreement with models based on fits to electron and muon scattering data. Using these results to fix the u(x) normalization, an absolute measurement is made of x[d¯(x)+s¯(x)], the antiquark momentum distribution.

1 data table

VALUES OF Q**2 ASSOCIATED WITH THE FOLLOWING TABLE ARE.... 2.2 , 3.5 , 3.4 , 4.4 , 4.7 , 5.0 , 6.0 , 6.5 , 7.7 , 8.0.