Inclusive cross sections and one-particle inclusive spectra are given for neutral K, Λ and Λ produced in K − p and K + p interactions at 32 GeV/ c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. Cross sections for associated production are also given, and the energy dependences of the cross sections and of the x distributions in the central and in the fragmentation regions are discussed.
Inclusive cross sections and longitudinal momentum distributions are presented for γ rays produced in K − p and K + p interactions at 32 GeV/c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. The average longitudinal and transverse momentum of neutral pions and the average π 0 multiplicity ▪ 〈 n π 0〉 are estimated. It is found that 〈 n π 0〉 is an increasing function of the number of charged prongs.
Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.
Neutral-pion production in pp interactions has been studied using 8000 photon conversions in the Fermilab 15-ft bubble chamber. Inclusive π0 multiplicity moments and ππ correlation integrals are presented; f200 is determined to be + 3.0±0.8. For the semi-inclusive π0 multiplicity distributions we find 〈n(π0)〉n− to increase with n−, while the dispersions are n− independent. Results on f2−0, f200, and f2,n−00 are compared to predictions of simple cluster models.
We report measurements of inelastic photoproduction of ω and ρ± mesons from hydrogen and deuterium at incident photon energies in the range 7.5-10.5 GeV. For ωΔ and ρ−Δ++ production, differential cross sections dσdt′ and spin density matrices are presented. For higher missing masses the cross sections dσdMX2 and invariant structure functions F(x) are also given. The data are compared to a one-pion-exchange model. We conclude that pion exchange is dominant for inelastic ω photoproduction, but unimportant for ρ±.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
We report here additional positive results of a search for muonless neutrino- and anti-neutrino-induced events using an enriched antineutrino beam and a muon identifier of relatively high geometric detection efficiency. The ratio of muonless to muon event rates is observed to be R=0.20±0.05. We observe no background derived from ordinary neutrino or antineutrino interactions that is capable of explaining the muonless signal.
In a 35 000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at the Fermi National Accelerator Laboratory, 10054 interactions have been observed. The measured total cross section is $40.68 \pm 0.55$ mb, the elastic cross section is $7.89 \pm 0.52$ mb, and the average charged-particle multiplicity for inelastic events is $8.S0 \pm 0.12$.
In π − p interactions at 9 GeV/ c and 12 GeV/ c , the forward production of N ∗ 1680 and N ∗ 1520 has been observed with features of nucleon exchange. The production of Δ1232 is strongly suppressed.
Using new data from 100 GeV c π − interactions, we find the energy dependence of the invariant cross-section in the target fragmentation (central) region to be consistent with an A + Bs − 1 2 (C + Ds − 1 4 ) behavior. The leading particle peak near x = + 1 exhibits a width in x which becomes smaller with increasing energy and an integrated cross section which is approximately energy independent.