Date

Angular analysis of the $B^{0}\rightarrow K^{*0}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 02 (2016) 104, 2016.
Inspire Record 1409497 DOI 10.17182/hepdata.74247

An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1<q^{2}<6.0\mathrm{\,Ge\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\!P$-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.

83 data tables match query

CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.

CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

More…

Measurement of prompt hadron production ratios in $pp$ collisions at $\sqrt{s} = $ 0.9 and 7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adametz, A ; et al.
Eur.Phys.J.C 72 (2012) 2168, 2012.
Inspire Record 1119400 DOI 10.17182/hepdata.59495

The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $\pi^-/\pi^+$, $(p + \bar{p})/(\pi^+ + \pi^-)$, $(K^+ + K^-)/(\pi^+ + \pi^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $\eta$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $\Delta y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport.

12 data tables match query

The measured ratio of prompt antiproton to proton production at 900 GeV.

The measured ratio of prompt antiproton to proton production at 7000 GeV.

The measured ratio of prompt negative to positive kaon production at 900 GeV.

More…

Measurement of event-shape observables in $Z \to \ell^{+} \ell^{-}$ events in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 375, 2016.
Inspire Record 1424838 DOI 10.17182/hepdata.74004

Event-shape observables measured using charged particles in inclusive $Z$-boson events are presented, using the electron and muon decay modes of the $Z$ bosons. The measurements are based on an integrated luminosity of $1.1 {\rm fb}^{-1}$ of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy $\sqrt{s}=7$ TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the $Z$-boson decay, are measured in different ranges of transverse momentum of the $Z$ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and $\mathcal{F}$-parameter, which are in particular sensitive to properties of the underlying event at small values of the $Z$-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high $Z$-boson transverse momenta than at low $Z$-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.

60 data tables match query

No description provided.

No description provided.

No description provided.

More…

Distributions of Topological Observables in Inclusive Three- and Four-Jet Events in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 302, 2015.
Inspire Record 1345159 DOI 10.17182/hepdata.75115

This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 inverse femtobarns. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MADGRAPH interfaced with PYTHIA6 displays the best overall agreement with data.

12 data tables match query

CORRECTED NORMALIZED DISTRIBUTION OF THREE-JET MASS IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE SECOND-LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.

More…

Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 160, 2012.
Inspire Record 1111014 DOI 10.17182/hepdata.70063

Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.

128 data tables match query

The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

More…

Measurement of charged-particle event shape variables in sqrt(s) = 7 TeV proton-proton interactions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 88 (2013) 032004, 2013.
Inspire Record 1124167 DOI 10.17182/hepdata.58968

The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.

8 data tables match query

Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.

Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.

Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.

More…

Jet and underlying event properties as a function of particle multiplicity in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2674, 2013.
Inspire Record 1261026 DOI 10.17182/hepdata.68128

Characteristics of multi-particle production in proton-proton collisions at $\sqrt{s}$=7 TeV are studied as a function of the charged-particle multiplicity, $N_{ch}$. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum $p_T$ > 0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have $p_T$ > 5 GeV/c. The distributions of jet $p_T$, average $p_T$ of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of $N_{ch}$ and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the $N_{ch}$-dependence observed in the data. For increasing $N_{ch}$, PYTHIA systematically predicts higher jet rates and harder $p_T$ spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

17 data tables match query

Mean $p_T$, all charged particles.

Mean $p_T$, UE charged particles.

Mean $p_T$, in-jet charged particles.

More…

Version 2
Measurement of $V^0$ production ratios in $pp$ collisions at $\sqrt{s} = 0.9$ and 7\,TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 08 (2011) 034, 2011.
Inspire Record 917009 DOI 10.17182/hepdata.58685

The $\bar{\Lambda} / \Lambda$ and $\bar{\Lambda} / K^0_\mathrm{S}$ production ratios are measured by the LHCb detector from $0.3\,\mathrm{nb}^{-1}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$\,TeV and $1.8\,\mathrm{nb}^{-1}$ at $\sqrt{s} = 7$\,TeV. Both ratios are presented as a function of transverse momentum, $p_\mathrm{T}$, and rapidity, $y$, in the ranges {$0.15 < p_\mathrm{T} < 2.50\,\mathrm{GeV}/c$} and {$2.0<y<4.5$}. Results at the two energies are in good agreement as a function of rapidity loss, $\Delta y = y_\mathrm{beam} - y$, and are consistent with previous measurements. The ratio $\bar{\Lambda} / \Lambda$, measuring the transport of baryon number from the collision into the detector, is smaller in data than predicted in simulation, particularly at high rapidity. The ratio $\bar{\Lambda} / K^0_\mathrm{S}$, measuring the baryon-to-meson suppression in strange quark hadronisation, is significantly larger than expected.

32 data tables match query

$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 900 GeV in $y$ intervals for ($0.25 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.

Lambdabar over Lambda @ 900GeV in y interals for (0.25<PT<0.65),(0.65<PT<1.00),(1.00<PT<2.50) GeV/c.

$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 900 GeV in $y$ intervals for ($0.25 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.

More…

Measurement of charged particle multiplicities in $pp$ collisions at ${\sqrt{s} =7}$TeV in the forward region

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 1947, 2012.
Inspire Record 1082369 DOI 10.17182/hepdata.65435

The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${\sqrt{s} =7}$TeV in different intervals of pseudorapidity $\eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $\eta$ ranges $-2.5&lt;\eta&lt;-2.0$ and $2.0&lt;\eta&lt;4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $\eta$. In general, the models underestimate the charged particle production.

8 data tables match query

Charged particle multiplicity distribution in minimum bias events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.

Charged particle multiplicity distribution in hard QCD events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.

Charged particle multiplicity distribution for minimum bias events in the full pseudorapidity range. The first quoted uncertainty is statistical and the second is systematic.

More…

Measurement of the cross-section for Z->e+e- production in pp collisions at sqrt{s}=7TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adametz, A ; et al.
JHEP 02 (2013) 106, 2013.
Inspire Record 1208102 DOI 10.17182/hepdata.65545

A measurement of the cross-section for pp$ \rightarrow$Z$ \rightarrow$e$^+$e$^-$ is presented using data at $\sqrt{s}=7$ TeV corresponding to an integrated luminosity of 0.94 fb$^{-1}$. The process is measured within the kinematic acceptance $p_{\mathrm{T}}&gt;20$GeV/$c$ and $2&lt;\eta&lt;4.5$ for the daughter electrons and dielectron invariant mass in the range 60-120 GeV/$c^2$. The cross-section is determined to be $$\sigma(pp \rightarrow Z \rightarrow e^+ e^- )=76.0\pm0.8\pm2.0\pm2.6{\rm pb}$$ where the first uncertainty is statistical, the second is systematic and the third is the uncertainty in the luminosity. The measurement is performed as a function of Z rapidity and as a function of an angular variable which is closely related to the Z transverse momentum. The results are compared with previous LHCb measurements and with theoretical predictions from QCD.

5 data tables match query

Cross-section of $pp \to Z \to e^+ e^-$ integrated over $Z$ rapidity. The first quoted uncertainty is statistical, the second is the experimental systematic uncertainty, the third is the luminosity uncertainty and the fourth uncertainty is due to FSR correction.

Differential cross-section of $pp \to Z \to e^+ e^-$ as function $Z$ rapidity. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.

Differential cross-section of $pp \to Z \to e^+ e^-$ as function of $\phi^*$ kinematic variable constructed from electron pair azimuthal angle and pseudorapidity and correlated to $Z$ tranverse momentum. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.

More…