Date

$\overlineΣ^{\pm}$ production in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with ALICE

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-151, 2025.
Inspire Record 2948508 DOI 10.17182/hepdata.167229

The transverse momentum spectra and integrated yields of $\overlineΣ^{\pm}$ have been measured in pp and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE experiment. Measurements are performed via the newly accessed decay channel $\overlineΣ^{\pm} \rightarrow {\rm\overline{n}}π^{\pm}$. A new method of antineutron reconstruction with the PHOS electromagnetic spectrometer is developed and applied to this analysis. The $p_{\rm T}$ spectra of $\overlineΣ^{\pm}$ are measured in the range $0.5 < p_{\rm T} < 3$ GeV/$c$ and compared to predictions of the PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4 models. The EPOS LHC and EPOS4 models provide the best descriptions of the measured spectra both in pp and p-Pb collisions, while models which do not account for multiparton interactions provide a considerably worse description at high $p_{\rm T}$. The total yields of $\overlineΣ^{\pm}$ in both pp and p-Pb collisions are compared to predictions of the Thermal-FIST model and dynamical models PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4. All models reproduce the total yields in both colliding systems within uncertainties. The nuclear modification factors $R_{\rm pPb}$ for both $\overlineΣ^{+}$ and $\overlineΣ^{-}$ are evaluated and compared to those of protons, $Λ$ and $Ξ$ hyperons, and predictions of EPOS LHC and EPOS4 models. No deviations of $R_{\rm pPb}$ for $\overlineΣ^{\pm}$ from the model predictions or measurements for other hadrons are found within uncertainties.

1 data table match query

$p_\mathrm{{T}}$-differential nuclear modification factor $R_\mathrm{{pPb}}$ of $\overline{\Sigma}^{-}$ in NSD p-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y_\mathrm{CMS}|<0.5$.


Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

The PHENIX collaboration Afanasiev, S. ; Aidala, Christine Angela ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 100 (2008) 232301, 2008.
Inspire Record 771583 DOI 10.17182/hepdata.140842

A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.

2 data tables match query

Source function comparison between Therminator calculation and image for $S(r_x)$ in PCMS.

Source function comparison between Therminator calculation and image for $S(r_x)$ in PCMS.