The cross section e + e − → π + π − π o has been measured in the φ energy region and at three other energies (915, 990, 1076 MeV) chosen outside the ω and φ resonances. In the same experiment the energy position and the width of the φ resonance have been determined from the φ →K S o K L o channel. It is found that the magnitude and energy dependence of the experimental cross section are well described by coherent production of ω and φ in the whole energy range 770 to 1076 MeV. Our data clearly show an interference effect which corresponds to an opposite sign between the two products g γω g ω →3 π and g γφ g φ →3 π of the coupling constants.
EXPERIMENTAL CROSS SECTIONS - RADIATIVE CORRECTIONS CAN BE SIGNIFICANT.
The radiative decay models of the φ-meson have been studied: e + e − → φ → ηγ →3 γ ; e + e − → φ → π o γ →3 γ . Cross sections σ φ → ηγ →3 γ and σ φ → π o γ →3 γ have been measured at five energies in the φ-meson energy region and clearly show the φ-resonance in the ηγ → 3 γ mode as well as in the π o γ → 3 γ mode. From a Breit-Wigner fit to the experimental data the values of the branching ratios are deduced: B φ → ηγ = (1.5 ± 0.4) × 10 −2 ; B φ → π o γ = (1.4 ± 0.5) × 10 −3 .
REMOVING RADIATIVE CORRECTIONS, THE PHI PEAK CROSS SECTIONS ARE 66 NB +- 25 PCT <ETA GAMMA> AND 6.5 NB +- 30 PCT <PI0 GAMMA>.
We present results from a study of high-momentum inclusive hadron production in electron-positron interactions at s=3.8 and 4.8 GeV. Comparison of the momentum spectra at these energies shows no scaling violation in the region x(=EEbeam)>0.7. At s=4.8 GeV the Kπ ratio for hadrons with momenta >1.1 GeV/c is 0.27±0.08, and the average number of charged hadrons is 3.6±0.3 for those events which have at least one charged hadron with momentum greater than 1.1 GeV/c.
No description provided.
The photoproduction of the ψ(3100) meson from a beryllium target has been measured using an 11.8-GeV bremsstrahlung beam. The energy and angular dependence of the measured spectra may be obtained from an elastic nucleon cross section of the form dσdt=(1.01±0.20)exp[(1.25±0.20)t] nb/GeV2. This cross section is exceedingly small in comparison with those of the other vector mesons.
ELECTRON PAIR PRODUCTION FROM BERYLLIUM TARGET. ELASTIC CROSS SECTION VALUE ALLOWS FOR SYSTEMATIC UNCERTAINTIES AND POSSIBLE INELASTIC CONTRIBUTIONS. -TMIN = 0.41 GEV**2.
We have found events of the form e++e−→e±+μ∓+missingenergy, in which no other charged particles or photons are detected. Most of these events are detected at or above a center-of-mass energy of 4 GeV. The missing-energy and missing-momentum spectra require that at least two additional particles be produced in each event. We have no conventional explanation for these events.
X IN RE INCLUDES TWO OR MORE UNDETECTED PARTICLES.
We have observed an azimuthal asymmetry in inclusive hadron production by e+e− annihilation at the center-of-mass energy s=7.4 GeV. The asymmetry is caused by the polarization of the circulating beams in the storage ring and allows separate determination of the transverse and longitudinal structure functions. We find that transverse production dominates for x>0.2 where x is the scaling variable 2ps.
No description provided.
No description provided.
No description provided.
Cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3684 MeV are presented. The ψ(3684) resonance is established as having the assignment JPC=1−−. The mass is 3684 ± 5 MeV. The partial width for decay to electrons is Γe=2.1±0.3 keV and the total width is Γ=228±56 keV.
No description provided.
We have studied backward baryon and meson production in π−p→pπ+π−π− at 8.0 GeV/c using a streamer chamber triggered by the detection of a fast forward proton. Our data sample (1227 events) displays prominent N*ρ and N*f quasi-two-body production. These states are investigated with regard to the peripheral nature of the production mechanism and sequential decay of the excited baryon and meson systems. The quasi-two-body production of N*ρ and N*f intermediate states is consistent with u-channel proton exchange as the dominant production mechanism. In the π+π−π− mass distribution we observe a 3- to 4- standard-deviation enhancement at M3π=1897±17 MeV/c2 with full width at half maximum = 110 ± 82 MeV/c2, but find no but find no evidence for backward A1 or A2 production. We observe Δ++(1232) production in the pπ+ effective mass distribution.
THESE VALUES ASSUME ONLY RHO(11) IS NON-ZERO. VALUES FOR OTHER RHO(MM) ARE QUOTED IN PAPER. SIG ERRORS INCLUDE OVER-ALL NORMALIZATION UNCERTAINTY, BUT NO BACKGROUND CORRECTIONS HAVE BEEN MADE.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
None
THE ERRORS INCLUDE THE UNCERTAINTIES IN THE FIT PARAMETERS SLOPE AND SIG, WHILE THE PURELY STATISTICAL ERRORS ARE ALSO GIVEN.
A search for narrow resonances in the reaction e + e − → hadrons in the mass regions 1915–2345 MeV and 2970–3090 MeV has been perforned at ADONE, the Frascati storage ring. With 90% confidence level our data exclude the production of narrow resonances with integrated cross section larger than 20% of the integrated cross section for production of the J/Ψ (3100 MeV).
No description provided.