We present an experimental study of jetproduction in photon-photon interactions for 0.1≲Q2≲120 GeV2 and jet transverse momentum,pT, up to 5 GeV/c. At alQ2, the data show a highpT, tail, characteristic of a point-like interaction. The jet production cross-section approaches the quarkparton model (QPM) expectation as either jetpT orQ2 increases. Overall, the data are well described in both total cross-section and event topology by the sum of a vector-dominance model and a point-like interaction, represented by the QPM.
No description provided.
The proton-antiproton total cross section was measured at the CM energy √s = 546 GeV . The result is σ tot = 61.9± 1.5 mb . The ratio of the elastic to the total cross section is σ e ℓ / σ tot = 0.215±0.005. A comparison to the lower energy data shows that the increase of the total cross section with energy is very close to a log 2 s behaviour.
CROSS SECTIONS ASSUMING RHO = 0.15.
RATIO OF ELASTIC TO TOTAL CROSS SECTION.
None
No description provided.
None
TYPICAL QUASIELASTIC ANGULAR DISTRIBUTION FOR NUCLEAR TARGET. OTHER DATA ARE IN ASHFORD ET AL (1985-PHYS REV C).
ABSORPTION CROSS SECTIONS.
No description provided.
The invariant cross section for production of jet pairs in 400-GeV/c pp interactions has been measured as a function of pT in the pT range 4 to 9 GeV/c. The results are in good agreement with predictions of perturbative QCD models.
ACTUALLY THE PT IS THE AVERAGE OF THE 2 JETS.
Results are presented on π±p, K±p, and p±p elastic scattering measured with an apparatus having acceptance of 0.5<−t<2.5 (GeV/c)2 and 0.9<−t<11 (GeV/c)2 at 100 and 200 GeV/c, respectively. A diffractionlike dip is seen for the first time in the π−p t distribution at −t=4 (GeV/c)2. All meson-proton cross sections are found to be similar in the range 1<−t<2.5 (GeV/c)2, although some small systematic differences are observed. Cross sections for pp and p―p are compared with previous data.
No description provided.
No description provided.
No description provided.
Measurements are reported of the difference ΔσL between proton-proton total cross sections for parallel and antiparallel spin states and of the parameter CLL for proton-proton elastic scattering near 90°, for thirteen energies between 300 and 800 MeV. The ΔσL results agree well with previous ANL ZGS and SIN data, but disagree with recent results from TRIUMF. Attempts to understand the cause of the discrepancy have been unsuccessful, but possible sources are discussed. The ΔσL and CLL results have been used with other experimental data to extract quantities which depend only on spin-singlet, coupled spin-triplet, and spin-triplet partial waves. Structure is found in these quantities, which appears to be associated with the resonantlike D21 and F33 partial waves. Additional similar structure is also found, which may be due either to the P03 partial wave or the (P23,F23) partial-wave pair.
ERROR IS STATISTICAL ONLY (ERROR IN BRACKETS IS STATISTICAL WITH THE ENERGY DEPENDENT UNCERTAINTIES FOLDED IN).
ERRORS ARE STATISTICAL ONLY. THERE IS ADDITION OF 2.0 AND 2.1 PCT SYSTEMATICS.
No description provided.
None
No description provided.
Experimental data on the forward-backward asymmetry of π- emission in (d,4He,12C)181Ta interactions atp/A=4.2 GeV/c are presented. The absolute value of the asymmetry coefficient of the inclusive π- production in the nucleon-nucleonCMS decreases asAp−0.35 with increasing atomic mass of projectile nucleus. A method of obtaining the target-to-projectile ratio of the numbers of participant nucleonsNt/Np through measuring the velocity of the symmetric pion emission system is proposed. It has been found that Nt/Np∼Ap−0.73.
No description provided.
IN THE NUCLEON-NUCLEON CENTRE-OF-MASS SYSTEM.
IN THE NUCLEON-NUCLEON CENTRE-OF-MASS SYSTEM.
Results from π± elastic and inelastic scattering from C12 and Ca40 are reported. The data were all taken at an incident momentum of 800 MeV/c over an angular range from 4° to 38°. The elastic data are compared to first-order optical model calculations in momentum space; qualitative agreement is obtained. The inelastic data (from C12 only) are compared to distorted-wave Born approximation calculations, and reasonable agreement is found if realistic inelastic transition densities are used.
No description provided.
THE C12* NUCLEUS IS IN THE STATE 2+ (4.4 MEV).
THE C12* NUCLEUS IS IN THE STATE 3- (9.6 MEV).