Results on hyperon production are reported for data accumulated at 10 GeV centre-of-mass energy with the ARGUS detector. Signals for both the octet states Λ, Σ 0 and Ξ − and the decuplet states Σ ± (1385), Ξ 0 (1530) and Ω − are observed 1 (references to a specific state are to be interpreted as also implying the charge conjugate state), some for the first time in e + e − annihilation. Baryon rates from γ dir (1S) decays are enhanced by a factor of about 3 over the continuum.
No description provided.
Using the ARGUS detector at DORIS we have obtained evidence for a resonance which decays into an F meson and a photon. The observed mass is 2109 ± 9 ± 7 MeV, which is 144 ± 9 ± 7 MeV greater than the F meson mass. Its properties are consistent with those of the F ∗ meson with J P = 1 − .
No description provided.
New data for the reaction e + e − →ϒ(9.46) have been obtained using the DASP detector at the DORIS storage ring. The electronic width Γ ee is (1.5±0.4) keV. The branching ratio for the decay into muon pairs is (2.5 ± 2.1)%. Energy spectra for inclusive production of hadrons are given.
INVARIANT INCLUSIVE PRODUCTION CROSS SECTION E*D3(SIG)/DP**3 BOTH ON AND OFF THE UPSILON(9.46) RESONANCE. NO SIGNIFICANT DIFFERENCE IN EXPONENTIAL SLOPE AS A FUNCTION OF PARTICLE ENERGY E(P=3).
Using the ARGUS detector at DORIS, we have observed the production of F ± mesons in e + e − annihilation at a centre of mass energy of 10 GeV through their subsequent decays into φπ ± and φπ + π − π ± . The values obtained for [ R (e + e − →FX). Branching Ratio] are (1.47 ± 0.32 ± 0.20)% and (1.63 ± 0.42 ± 0.41)% respectively. The observed mass is (1973.6 ± 2.6 ± 3.0) MeV c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into D ∗ mesons. The relevant angular distributions are consistent with a spin-zero assignment of the F meson.
RESULTS OF FITS FOR SPECIFIED DECAY CHANNELS.
ACCEPTANCE CORRECTED FRAGMENTATION FUNCTION FOR THE TWO DECAY CHANNELS COMBINED. X IS PF/PMAX. DATA HAVE BEEN READ FROM THE GRAPH.
The production of antideuterons has been observed in electron-positron annihilations at center-of-mass energies around 10 GeV. Antideuterons have been identified unambiguously by their energy loss in the drift chamber, their time-of-flight and the pattern of their energy deposition in the shower counters of the ARGUS detector. The production rate in the momentum range (0.6−1.8) GeV/ c is (1.6 −0.7 +1.0 ) × 10 −5 per hadronic event.
A search has been made for particles with charge Q = 1 3 , Q = 2 3 and Q = 4 3 produced in e + e − annihilation using the ARGUS detector at the e + e − storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb −1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV c 2 , improving on previously obtained limits.
The production of η(550) and ω(780) mesons is studied in π ± p interactions at 16 GeV/ c and K − p interactions at 10 and 16 GeV/ c . Cross sections for exclusive channels are presented, and for the π + p data differential cross sections are given for quasi-inclusive production where the η or ω is required to be accompanied by charged particles only. Close similarities are observed between η, ω and also ϱ 0 (770) production in terms of longitudinal and transverse variables. By a rough estimate, the η, ω and ϱ 0 inclusive yields are found to be in the ratio 0.32 : 0.85 : 1, respectively, for 16 GeV/ c π + p collisions. For non-peripheral production we estimate this same ratio to be 0.34 : 0.9 : 1.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
DATA SUPPLIED BY A.A. LEBEDEV.
A study is presented of the inclusive production cross sections of K ∗± (892) vector mesons in pp interactions at 12 and 24 GeV/ c and in π + p interactions at 16 GeV/ c . The K ∗± inclusive cross section is ∼0.9 mb for both pp at 24 GeV/ c and π + p interactions at 16 GeV/ c . For pp interactions, σ( K ∗+ ) and σ( K ∗− ) are seen to rise with energy, showing a threshold behaviour. In both pp and π + p interactions, σ( K ∗+ ) largely exceeds σ( K ∗− ) at these energies and this excess is interpreted as K ∗+ production by beam and target fragmentations. The decays of K ∗±0 yield ∼30% of the K 0 observed in the final states. The p T 2 dependence of both K ∗+ and K ∗ − cross sections is described by an exponential with slope of ∼3.3 (GeV/ c ) −2 . The longitudinal momentum spectra for K ∗+ in 16 GeV/ c π + p and 24 GeV/ c pp interactions are similar in shape in the target hemisphere. The K ∗− spectra are similar over the whole kinematic region when viewed in the quark c.m.s. and point to a central production mechanism. Comparing K ∗+ and ρ 0 production, striking similarities are found.
No description provided.
ASSUMED SIG(KS)=SIG(KL).
No description provided.
We report on a high precision measurement of ϕ-meson production in continuum events and in direct decays of the Υ(1S)- and Υ(2S)-mesons. The ratio of the total production rate of ϕ-mesons in direct Υ(1S)- and Υ(2S)-decays over that in continuum events is 1.32±0.08±0.09 and 1.07±0.13±0.11 respectively. This is compatible with the corresponding ratio obtained for lighter mesons, but is appreciably smaller than the relative baryon production rate.
Production rates of continuum at resonance energies.
Production rates of continuum at resonance energies.
We report the first observation of an orbitally excited baryon, the Λ(1520), in quark and gluon fragmentation. The production rate is found to be (1.15±0.21±0.16)×10 −2 and (0.80±0.17 −0.13 +0.10 )×10 −2 Λ (1520) hyperons per event in direct ϒ decays and in the continuum, respectively. In contrast to the observed situation for ground state baryons, the production of the Λ(1520) in direct ϒ decays shows little or no enhancement with respect to continuum production.
Full X range uses extrapolation from fit to dsig/dz distribution.
No description provided.
UPSI(1S) DECAYS.