Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

2 data tables match query

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.


Version 2
Observation of $\tau$ lepton pair production in ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 151803, 2023.
Inspire Record 2094321 DOI 10.17182/hepdata.129600

We present an observation of photon-photon production of $\tau$ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 $\mu$b$^{-1}$ collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The $\gamma\gamma$$\to$$\tau^+\tau^-$ process is observed for $\tau\tau$ events with a muon and three charged hadrons in the final state. The measured fiducial cross section is $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$ = 4.8 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) $\mu$b, in agreement with leading-order QED predictions. Using $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$, we estimate a model-dependent value of the anomalous magnetic moment of the $\tau$ lepton of $a_\tau$ = 0.001 $^{+0.055}_{-0.089}$.

4 data tables match query

$\gamma\gamma\to\tau\tau$ fiducial cross section

$\gamma\gamma\to\tau\tau$ fiducial cross section

Limits on anomalous magnetic moment of the tau lepton

More…

Extracting the speed of sound in the strongly interacting matter created in ultrarelativistic lead-lead collisions at the LHC

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Rept.Prog.Phys. 87 (2024) 077801, 2024.
Inspire Record 2747107 DOI 10.17182/hepdata.146016

Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 $\pm$ 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.

3 data tables match query

The event fraction distribution as a function of the charged-particle multiplicity, $N_{\mathrm{ch}}$, within the kinematic range of $|\eta|<0.5$ and extrapolated to the full $p_{\mathrm{T}}$ range, in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV. The $N_{\mathrm{ch}}$ value is normalized by its value in the $0-5\%$ centrality class ($N_{\mathrm{ch}}^{0}$).

The average transverse momentum of charged particles, $\langle p_{\mathrm{T}}\rangle$, as a function of the charged-particle multiplicity, $N_{\mathrm{ch}}$, within the kinematic range of $|\eta|<0.5$ and extrapolated to the full $p_{\mathrm{T}}$ range in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV. Both $\langle p_{\mathrm{T}}\rangle$ and $N_{\mathrm{ch}}$ are normalized by their values in the $0-5\%$ centrality class (${\langle p_{\mathrm{T}}\rangle}^{0}$ and $N_{\mathrm{ch}}^{0}$).

The speed of sound, $c^2_{\mathrm{s}}$, as a function of the effective temperature, $T_{\mathrm{eff}}$, with the CMS data point obtained from ultra-central PbPb collision data at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV.


Search for medium effects using jets from bottom quarks in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 844 (2023) 137849, 2023.
Inspire Record 2165920 DOI 10.17182/hepdata.130960

The first study of the shapes of jets arising from bottom (b) quarks in heavy ion collisions is presented. Jet shapes are studied using charged hadron constituents as a function of their radial distance from the jet axis. Lead-lead (PbPb) collision data at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV were recorded by the CMS detector at the LHC, with an integrated luminosity of 1.69 nb$^{-1}$. Compared to proton-proton collisions, a redistribution of the energy in b jets to larger distances from the jet axis is observed in PbPb collisions. This medium-induced redistribution is found to be substantially larger for b jets than for inclusive jets.

12 data tables match query

Jet shapes, $\rho(\Delta r)$, for inclusive and b jets as function of $\Delta r$ from pp and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Jet shapes, $\rho(\Delta r)$, for inclusive and b jets as function of $\Delta r$ from pp and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Jet shapes, $\rho(\Delta r)$, for inclusive and b jets as function of $\Delta r$ from pp and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

More…

Elliptic anisotropy measurement of the f$_0$(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-20-002, 2023.
Inspire Record 2741119 DOI 10.17182/hepdata.146017

Despite the f$_0$(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($\mathrm{q\bar{q}}$) meson, a tetraquark ($\mathrm{q\bar{q}q\bar{q}}$) exotic state, a kaon-antikaon ($\mathrm{K\bar{K}}$) molecule, or a quark-antiquark-gluon ($\mathrm{q\bar{q}g}$) hybrid. This paper reports strong evidence that the f$_0$(980) state is an ordinary $\mathrm{q\bar{q}}$ meson, inferred from the scaling of elliptic anisotropies ($v_2$) with the number of constituent quarks ($n_\mathrm{q}$), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f$_0$(980) state is reconstructed via its dominant decay channel f$_0$(980) $\to$$\pi^+\pi^-$, in proton-lead collisions recorded by the CMS experiment at the LHC, and its $v_2$ is measured as a function of transverse momentum ($p_\mathrm{T}$). It is found that the $n_q$ = 2 ($\mathrm{q\bar{q}}$ state) hypothesis is favored over $n_q$ = 4 ($\mathrm{q\bar{q}q\bar{q}}$ or $\mathrm{K\bar{K}}$ states) by 7.7, 6.3, or 3.1 standard deviations in the $p_\mathrm{T}$$\lt$ 10, 8, or 6 GeV/$c$ ranges, respectively, and over $n_\mathrm{q}$ = 3 ($\mathrm{q\bar{q}g}$ hybrid state) by 3.5 standard deviations in the $p_\mathrm{T}$$\lt$ 8 GeV/$c$ range. This result represents the first determination of the quark content of the f$_0$(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.

6 data tables match query

The elliptic flow, $v_{2}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}/2$, for $f_0(980)$ as a function of $<KE_{T}>/2$ in pPb collision at 8.16 TeV.

More…

Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-23-001, 2024.
Inspire Record 2783507 DOI 10.17182/hepdata.151507

This Letter presents the first measurements of the groomed jet radius $R_\mathrm{g}$ and the jet girth $g$ in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables $R_\mathrm{g}$ and $g$ provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb$^{-1}$ and 301 pb$^{-1}$, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum $p_\mathrm{T}^\gamma$ 100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum $p_\mathrm{T}^\text{jet}$ such that $p_\mathrm{T}^\text{jet}/p_\mathrm{T}^\gamma$$>$ 0.4. The measured $R_\mathrm{g}$ and $g$ distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with $p_\mathrm{T}^\text{jet}/p_\mathrm{T}^\gamma$$>$ 0.8, i.e., those that closely balance the photon $p_\mathrm{T}^\gamma$, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with $p_\mathrm{T}^\text{jet}/p_\mathrm{T}^\gamma$$>$ 0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.

28 data tables match query

Unfolded jet girth distribution in PbPb normalized to the number of jets that pass the $x_J$>0.4 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.

Covariance matrix of the statistical uncertainty in data for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.

Covariance matrix of the statistical uncertainty in MC for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.

More…

Observation of enhanced long-range elliptic anisotropies inside high-multiplicity jets in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-21-013, 2023.
Inspire Record 2741115 DOI 10.17182/hepdata.146015

A search for partonic collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged constituents using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm with a distance parameter of 0.8 and are required to have transverse momentum greater than 550 GeV and pseudorapidity $\lvert\eta\rvert$$\lt$ 1.6. Two-particle correlations among the charged constituents within the jets are studied as functions of the particles' azimuthal angle and pseudorapidity separations ($\Delta\phi^*$ and $\Delta\eta^*$) in a jet coordinate basis, where constituents' $\eta^*$, $\phi^*$ are defined relative to the direction of the jet. The correlation functions are studied in classes of in-jet charged-particle multiplicity up to $N_\text{ch}^\mathrm{j}$$\approx$ 100. Fourier harmonics are extracted from long-range azimuthal correlation functions to characterize azimuthal anisotropy for $\lvert\Delta\eta^*\rvert$$\gt$ 2. For low-multiplicity jets, the long-range elliptic anisotropic harmonic, $v^*_2$, is observed to decrease with $N_\text{ch}^\mathrm{j}$. This trend is well described by Monte Carlo event generators. However, a rising trend for $v^*_2$ emerges at $N_\text{ch}^\mathrm{j}$$\gtrsim$ 80, hinting at a possible onset of collective behavior, which is not reproduced by the models tested. This observation yields new insights into the dynamics of parton fragmentation processes in the vacuum.

3 data tables match query

Examples of two-particle angular correlations projected onto 1D $\Delta\phi^*$ for $\abs{\Delta\eta^*}>2$.

A continuous evolution of extracted two-particle Fourier coefficients $V^*_{N\Delta}$ as a function of $N_{ch}^{j}$.

The single-particle elliptic anisotropies $v^*_2$, as a function of $N_{ch}^{j}$.


Measurements of azimuthal anisotropy of nonprompt D$^0$ mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138389, 2024.
Inspire Record 2610495 DOI 10.17182/hepdata.131598

Measurements of the elliptic ($v_2$) and triangular ($v_3$) azimuthal anisotropy coefficients are presented for D$^0$ mesons produced in b hadron decays (nonprompt D$^0$ mesons) in lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The results are compared with previously published charm meson anisotropies measured using prompt D$^0$ mesons. The data were collected with the CMS detector in 2018 with an integrated luminosity of 0.58 nb$^{-1}$. Azimuthal anisotropy is sensitive to the interactions of quarks with the hot and dense medium created in heavy ion collisions. Comparing results for prompt and nonprompt D$^0$ mesons can assist in understanding the mass dependence of these interactions. The nonprompt results show lower magnitudes of $v_2$ and $v_3$ and weaker dependences on the meson transverse momentum and collision centrality than those found for prompt D$^0$ mesons. The results are in agreement with theoretical predictions that include a mass dependence in the interactions of quarks with the medium.

2 data tables match query

The elliptic, $v_2$ flow coefficients of nonprompt $\mathrm{D^0}$ mesons in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02~\mathrm{TeV}$.

The triangular, $v_3$ flow coefficients of nonprompt $\mathrm{D^0}$ mesons in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02~\mathrm{TeV}$.


K$^0_\mathrm{S}$ and $\Lambda(\overline\Lambda)$ two-particle femtoscopic correlations in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 857 (2024) 138936, 2024.
Inspire Record 2623117 DOI 10.17182/hepdata.133573

Two-particle correlations are presented for K$^0_\mathrm{S}$, $\Lambda$, and $\overline\Lambda$ strange hadrons as a function of relative momentum in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The dataset corresponds to an integrated luminosity of 0.607 nb$^{-1}$ and was collected using the CMS detector at the CERN LHC. These correlations are sensitive to quantum statistics and to final-state interactions between the particles. The source size extracted from the K$^0_\mathrm{S}$K$^0_\mathrm{S}$ correlations is found to decrease from 4.6 to 1.6 fm in going from central to peripheral collisions. Strong interaction scattering parameters (i.e., scattering length and effective range) are determined from the $\Lambda$K$^0_\mathrm{S}$ and $\Lambda\Lambda$ (including their charge conjugates) correlations using the Lednick$\'y$-Lyuboshitz model and are compared to theoretical and other experimental results.

14 data tables match query

The $K^{0}_{S}$ Invariant mass in $0-80\%$ centrality,

The $\Lambda (\overline{\Lambda})$ Invariant mass in $0-80\%$ centrality.

$K^{0}_{S} K^{0}_{S}$ correlation meassurement in $0-10\%$ centrality.

More…

Study of charm hadronization with prompt $\Lambda^+_\mathrm{c}$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 01 (2024) 128, 2024.
Inspire Record 2679262 DOI 10.17182/hepdata.135973

The production of prompt $\Lambda^+_\mathrm{c}$ baryons is measured via the exclusive decay channel $\Lambda^+_\mathrm{c}$$\to$ pK$^-\pi^+$ at a center-of-mass energy per nucleon pair of 5.02 TeV, using proton-proton (pp) and lead-lead (PbPb) collision data collected by the CMS experiment at the CERN LHC. The pp and PbPb data were obtained in 2017 and 2018 with integrated luminosities of 252 and 0.607 nb$^{-1}$, respectively. The measurements are performed within the $\Lambda^+_\mathrm{c}$ rapidity interval $\vert y \vert$$\lt$ 1 with transverse momentum ($p_\mathrm{T}$) ranges of 3-30 and 6-40 GeV/$c$ for pp and PbPb collisions, respectively. Compared to the yields in pp collisions scaled by the expected number of nucleon-nucleon interactions, the observed yields of $\Lambda^+_\mathrm{c}$ with $p_\mathrm{T}$$\gt$ 10 GeV/$c$ are strongly suppressed in PbPb collisions. The level of suppression depends significantly on the collision centrality. The $\Lambda^+_\mathrm{c}$ / D$^0$ production ratio is similar in PbPb and pp collisions at $p_\mathrm{T}$$\gt$ 10 GeV/$c$, suggesting that the coalescence process does not play a dominant role in prompt $\Lambda^+_\mathrm{c}$ baryon production at higher $p_\mathrm{T}$.

6 data tables match query

The product of acceptance and efficiency ($A \epsilon$) as a function of $p_{\mathrm{T}}$ for prompt $\Lambda^+_c$ in pp collisions and within centrality regions of 0-90, 0-10, 10-30, 30-50 and 50-90% in PbPb collisions.

The $p_{\mathrm{T}}$ differential cross sections for prompt $\Lambda^+_c$ production in pp collisions. The global fit uncertainty is 8.6%.

The $\mathrm{T_{AA}}$-scaled $\Lambda^+_c$ yields as a function of $p_{\mathrm{T}}$ for PbPb collisions within centrality regions of 0-90, 0-10, 10-30, 30-50 and 50-90%.

More…