Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.
Data from 1990 running period.
Data from 1990 running period.
Data from 1990 running period.
Using the 18.8 pb −1 of data accumulated at LEP in 1990 and 1991 with the ALEPH detector, a direct test of neutral current CP -invariance is performed by a search for CP -odd correlations in Z decays to τ pairs where both τ decay modes are identified. No evidence for CP -violation is observed. The weak dipole moment of the τ has been measured to be d τ ( m Z ) = (1.3 ± 1.4 ± 0.1) × 10 −17 e ·cm which results in an upper limit on the weak dipole moment of | d τ ( m Z )| ⩽ 3.7 × 10 −17 e ·cm with 95% confidence level.
No description provided.
A search for single photons, produced in e + e − collisions together with particles interacting only weakly with matter, has been performed using the CELLO detector at the PETRA storage ring. We report on results from data taken at 35 GeV < √ s <46.57 GeV. An upper limit of 8.7 (90% CL) on the number of light neutrino species is set. Combining our result with published results from other e + e − experiments the number of light neutrinos is limited to N v < 4.6 at 90% CL. We also set lower limits on the masses of supersymmetric particles.
TWO RUN AT DIFFERENT ENERGIES COMBINED, 1.26 EVENTS WAS FOUND.
The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.
No description provided.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Mu-pair cross sections.
Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.
Forward-backward asymmetry.
We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.