The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5<y^*<4.0$ ($-5.0<y^*<-2.5$) for $p$Pb (Pb$p$) collisions. In addition, production cross-sections for $\Upsilon (3S)$ are measured integrated over phase space and the production ratios between all three $\Upsilon (nS)$ states are determined. The measurements are compared to theoretical predictions and suppressions for quarkonium in $p$Pb collisions are observed.
$\Upsilon(1S)$ production cross-section in $p$Pb, as a function of $p_{T}$ and $y*$. The uncertainty is the sum in quadrature of the statistical and systematic components.
$\Upsilon(1S)$ production cross-section in Pb$p$, as a function of $p_{T}$ and $y^*$. The uncertainty is the sum in quadrature of the statistical and systematic components.
$\Upsilon(1S)$ production cross-section in $p$Pb and Pb$p$, as a function of $p_{T}$. The uncertainty is the sum in quadrature of the statistical and systematic components.
This article presents differential measurements of the asymmetry between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ baryon production rates in proton-proton collisions at centre-of-mass energies of $\sqrt{s}=7$ and $8\,\textrm{TeV}$ collected with the LHCb experiment, corresponding to an integrated luminosity of $3\,\textrm{fb}^{-1}$. The $\Lambda_b^0$ baryons are reconstructed through the inclusive semileptonic decay $\Lambda_b^0\rightarrow\Lambda_c^+\mu^-\overline{\nu}_{\mu}X$. The production asymmetry is measured both in intervals of rapidity in the range $2.15<y<4.10$ and transverse momentum in $2<p_T<27\,\textrm{GeV}/c$. The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $\sqrt{s}=7$ and $8\,\textrm{TeV}$ data, assuming no $C\!P$ violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in PYTHIA and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in $b$-hadron production at LHC energies.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 8$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ $p_T$ for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
The production of $B^+$, $B^0$ and $\Lambda_b^0$ hadrons is studied in proton-lead collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}=8.16\,{\rm TeV}$ recorded with the LHCb detector at the LHC. The measurement uses a dataset corresponding to an integrated luminosity of $12.2\pm0.3\,\mathrm{nb}^{-1}$ for the case where the proton beam is projected into the LHCb detector (corresponding to measuring hadron production at positive rapidity) and $18.6\pm0.5\,\mathrm{nb}^{-1}$ for the lead beam projected into the LHCb detector (corresponding to measuring hadron production at negative rapidity). Nuclear effects are probed through double-differential cross-sections, forward-to-backward cross-section ratios and nuclear modification factors of the beauty hadrons. The double-differential cross-sections are measured as a function of the beauty-hadron transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward cross-section ratios and nuclear modification factors indicate a significant nuclear suppression at positive rapidity. The ratio of $\Lambda_b^0$ over $B^0$ production cross-sections is reported and is consistent with the corresponding measurement in $pp$~collisions.
Differential cross-section of $B^+$ production in bins of $p_\mathrm{T}$ and $y$, $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\,\mathrm{d}y}$ ($\mu\mathrm{b}/[\mathrm{GeV}/c]$).
Differential cross-section of $B^0$ production in bins of $p_\mathrm{T}$ and $y$, $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\,\mathrm{d}y}$ ($\mu\mathrm{b}/[\mathrm{GeV}/c]$).
Differential cross-section of $\mathit{\Lambda}_b^0$ production in bins of $p_\mathrm{T}$ and $y$, $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\,\mathrm{d}y}$ ($\mu\mathrm{b}/[\mathrm{GeV}/c]$).
The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(1S) (in pb). The first uncertainty is statistical and the second is systematic.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(2S) (in pb). The first uncertainty is statistical and the second is systematic.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(3S) (in pb). The first uncertainty is statistical and the second is systematic.
The first study of $J/\psi\phi$ production in diffractive processes in proton-proton collisions is presented. The study is based on an LHCb dataset recorded at centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5 fb$^{-1}$. The data disfavour a nonresonant $J/\psi\phi$ production but are consistent with a resonant model including several resonant states observed previously only in $B^+ \to J/\psi\phi K^+$ decays. The $\chi_{c0}(4500)$ state is observed with a significance over $5\sigma$ and the $\chi_{c1}(4274)$ is confirmed with a significance of more than $4\sigma$.
Total $J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.
$\chi_{c1}(4140) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.
$\chi_{c1}(4274) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.
The cross-section for prompt antiproton production in collisions of protons with an energy of $6.5$ TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of $0.5\,nb^{-1}$. The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between $12$ and $110\,\mathrm{GeV/}c$, represent the first direct determination of the antiproton production cross-section in ${\rm p He}$ collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.
Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra. Projections of Table1 distribution in antiproton $p_T$ bins.
The average value of antiproton x-Feynman $x_F=2 p_{Z}^{*}/\sqrt{s}$ in bins of antiproton momentum and transverse momentum in collisions of 6.5 TeV protons on He nuclei at rest, where $p_{Z}^{*}$ is the longitudinal antiproton momentum in the center-of-mass system and $\sqrt{s}$ the nucleon-nucleon center-of-mass energy. In each bin the average value is reported for the antiproton momentum and transverse momentum. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra. Projections of Table 3 distribution in antiproton $p_T$ bins.
The production of $W$ and $Z$ bosons in association with jets is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 $\pm$ 0.02 fb$^{-1}$. The $W$ boson is identified using its decay to a muon and a neutrino, while the $Z$ boson is identified through its decay to a muon pair. Total cross-sections are measured and combined into charge ratios, asymmetries, and ratios of $W+$jet and $Z$+jet production cross-sections. Differential measurements are also performed as a function of both boson and jet kinematic variables. All results are in agreement with Standard Model predictions.
The total cross sections for $Wj$ and $Z^0 j$ production, obtained by summing over the measured cross-sections in bins of $\eta^{\mathrm{jet}}$.
The asymmetry of $W^+j$ and $W^-j$ production, given by $A(Wj)\equiv (\sigma_{W^+j}-\sigma_{W^-j})/(\sigma_{W^+j}+\sigma_{W^-j})$.
The measured cross-sections for $Wj$ production in four bins of $\eta^{\mu}$. The uncertainties shown are statistical, systematic and due to the luminosity determination.
The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the combined $\sqrt{s} =7$ and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =7$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =8$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.
Relative $\eta_c$ to $J/\psi$ differential production cross-sections for prompt production. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.
Differential production cross-sections of $\eta_c$ for prompt production. The uncertainties are statistical, systematic, and due to the $\eta_c\to p \bar{p}$ and $J/\psi\to p \bar{p}$ branching fractions and $J/\psi$ production cross-section.
Relative $\eta_c$ to $J/\psi$ differential production cross-sections for production in $b$-hadron inclusive decays. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.
A measurement of the production cross-section of Z bosons in pp collisions at $\sqrt{s} = 13$ TeV is presented using dimuon and dielectron final states in LHCb data. The cross-section is measured for leptons with pseudorapidities in the range $2.0 < \eta < 4.5$, transverse momenta $p_\text{T} > 20$ GeV and dilepton invariant mass in the range $60<m(\ell\ell)<120$ GeV. The integrated cross-section from averaging the two final states is \begin{equation*}\sigma_{\text{Z}}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6\text{ pb,}\end{equation*} where the first uncertainty is statistical, the second is due to systematic effects, and the third is due to the luminosity determination. In addition, differential cross-sections are measured as functions of the Z boson rapidity, transverse momentum and the angular variable $\phi^*_\eta$.
The FSR correction applied as a function of the boson rapidity for muons.
The FSR correction applied as a function of the boson rapidity for electrons.
The FSR correction applied as a function of $\phi ^ * _ \eta$ for muons.