Date

Precision measurement of the neutron spin asymmetry A(1)(n) and spin-flavor decomposition in the valence quark region.

The Jefferson Lab Hall A collaboration Zheng, X. ; Aniol, K. ; Armstrong, D.S. ; et al.
Phys.Rev.Lett. 92 (2004) 012004, 2004.
Inspire Record 625890 DOI 10.17182/hepdata.31679

We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first time, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.

1 data table

Measured values of A1 and G1/F1.


Production of pi+, pi-, K+, K-, p and anti-p in light (uds), c and b jets from Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.D 69 (2004) 072003, 2004.
Inspire Record 630327 DOI 10.17182/hepdata.22177

We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.

11 data tables

Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.

The charged pion fraction and differential production rate per hadronic Z0 decay.

The charged kaon fraction and differential production rate per hadronic Z0 decay.

More…

Measurements of electron proton elastic cross sections for 0.4-(GeV/c)**2 < Q**2 < 5.5-(GeV/c)**2.

The E94110 collaboration Christy, M.E. ; Ahmidouch, A. ; Armstrong, C.S. ; et al.
Phys.Rev.C 70 (2004) 015206, 2004.
Inspire Record 643262 DOI 10.17182/hepdata.31763

We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.

7 data tables

Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.

Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.

Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.

More…

Precision measurement of the neutron spin asymmetries and spin-dependent structure functions in the valence quark region.

The Jefferson Lab Hall A collaboration Zheng, X. ; Aniol, K. ; Armstrong, D.S. ; et al.
Phys.Rev.C 70 (2004) 065207, 2004.
Inspire Record 650244 DOI 10.17182/hepdata.31726

We report on measurements of the neutron spin asymmetries $A_{1,2}^n$ and polarized structure functions $g_{1,2}^n$ at three kinematics in the deep inelastic region, with $x=0.33$, 0.47 and 0.60 and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. These measurements were performed using a 5.7 GeV longitudinally-polarized electron beam and a polarized $^3$He target. The results for $A_1^n$ and $g_1^n$ at $x=0.33$ are consistent with previous world data and, at the two higher $x$ points, have improved the precision of the world data by about an order of magnitude. The new $A_1^n$ data show a zero crossing around $x=0.47$ and the value at $x=0.60$ is significantly positive. These results agree with a next-to-leading order QCD analysis of previous world data. The trend of data at high $x$ agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (pQCD) assuming hadron helicity conservation. Results for $A_2^n$ and $g_2^n$ have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment $d_2^n$ was evaluated and the new result has improved the precision of this quantity by about a factor of two. When combined with the world proton data, polarized quark distribution functions were extracted from the new $g_1^n/F_1^n$ values based on the quark parton model. While results for $\Delta u/u$ agree well with predictions from various models, results for $\Delta d/d$ disagree with the leading-order pQCD prediction when hadron helicity conservation is imposed.

6 data tables

Measurements of the HE3 asymmetries.

Measurements of the HE3 spin structure functions.

Measurements of the HE3 spin structure functions.

More…

Photon electroproduction from hydrogen at backward angles and momentum transfer squared of Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
JLAB-PHY-04-34, 2004.
Inspire Record 652965 DOI 10.17182/hepdata.38623

We have made the first measurements of the virtual Compton scattering process via the e p -> e p gamma exclusive reaction at Q**2 = 1 GeV**2 in the nucleon resonance region. The cross section is obtained at center of mass (CM) backward angle, theta_gamma_gamma*, in a range of total (gamma* p) CM energy W from the proton mass up to W = 1.91 GeV. The data show resonant structures in the first and second resonance regions, and are well reproduced at higher W by the Bethe-Heitler+Born cross section, including t-channel pi0-exchange. At high W, our data, together with existing real photon data, show a striking Q**2 independence. Our measurement of the ratio of H(e,e'p)gamma to H(e,e'p)pi0 cross sections is presented and compared to model predictions.

18 data tables

Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 15 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.

Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 45 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.

Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 75 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.

More…

Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3-GeV wide band muon neutrino beam.

The K2K collaboration Nakayama, S. ; Mauger, C. ; Ahn, M.H. ; et al.
Phys.Lett.B 619 (2005) 255-262, 2005.
Inspire Record 657451 DOI 10.17182/hepdata.41903

Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.

1 data table

Ratio of single PI0 NC cross section to the total CC cross section. For reference the total CC cross section is calculated to be 1.1 x 10**-38 CM**2/nucleon averaged over the K2K neutrino beam energy.


Cross section measurements of charged pion photoproduction in hydrogen and deuterium from 1.1-GeV to 5.5-GeV.

The Jefferson Lab Hall A & Jefferson Lab E94-104 collaborations Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.C 71 (2005) 044603, 2005.
Inspire Record 659852 DOI 10.17182/hepdata.31680

The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.

14 data tables

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.

More…

Polarization transfer in proton Compton scattering at high momentum transfer.

The Jefferson Lab Hall A collaboration Hamilton, D.J. ; Mamyan, V.H. ; Aniol, K.A. ; et al.
Phys.Rev.Lett. 94 (2005) 242001, 2005.
Inspire Record 660894 DOI 10.17182/hepdata.19389

Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and \t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

1 data table

Polarization transfer parameters.


Measurement of the gamma gamma --> pi+ pi- and gamma gamma --> K+ K- processes at energies of 2.4-GeV - 4.1-GeV.

The Belle collaboration Nakazawa, H. ; Uehara, S. ; Abe, K. ; et al.
Phys.Lett.B 615 (2005) 39-49, 2005.
Inspire Record 667712 DOI 10.17182/hepdata.68395

We have measured pi+pi- and K+K- production in two-photon collisions using 87.7 /fb of data collected with the Belle detector at the asymmetric energy e+e- collider KEKB. The cross sections are measured to high precision in the two-photon center-of-mass energy (W) range between 2.4 GeV < W < 4.1 GeV and angular region |cos theta^{*}| < 0.6. The cross section ratio sigma(gammagamma->K+K-)/sigma(gammagamma->pi+pi-) is measured to be 0.89 +- 0.04(stat) +- 0.15(syst) in the range of 3.0 GeV < W < 4.1 GeV, where the ratio is energy independent. We observe a sin^{-4} theta^{*} behavior of the cross section in the same W range. Production of chi_{c0} and chi_{c2} mesons is observed in both gammagamma -> pi+pi- and gammagamma -> K+K- modes.

6 data tables

Cross sections for PI+ PI- and K+ K- production.

Ratio of K+ K- to PI+ PI- production in the region of W from 3.0 to 4.1 GeV, where the ratio is energy independent.

Angular dependence of the normalized differential cross section, $\sigma_0^{-1}{\rm d}\sigma/{\rm d}|\cos\theta^*|$, for the $\pi^+\pi^-$ process. The errors are statistical only.

More…

The Q**2-dependence of the neutron spin structure function g2(n) at low Q**2.

Kramer, K. ; Armstrong, D.S. ; Averett, T.D. ; et al.
Phys.Rev.Lett. 95 (2005) 142002, 2005.
Inspire Record 684137 DOI 10.17182/hepdata.31614

We present the first measurement of the Q^2-dependence of the neutron spin structure function g_2^n at five kinematic points covering 0.57 (GeV/c)^2 <= Q^2 <= 1.34 (GeV/c)^2 at x~0.2. Though the naive quark-parton model predicts g_2=0, non-zero values for g_2 occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses or orbital angular momentum. When scattering from a non-interacting quark, $g_2^n$ can be predicted using next-to-leading order fits to world data for g_1^n. Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q^2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g_1^n are consistent with next-to-leading order fits to world data.

1 data table

Measured values of G1N ang G2N.