We report measurements of the primary charged particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined using different event activity estimators, i.e. charged particle multiplicities measured in three disjunct pseudorapidity regions as well as the energy measured at beam rapidity (zero-degree). The procedures to determine the centrality, quantified by the number of participants ($N_{\rm part}$), or the number of nucleon-nucleon binary collisions ($N_{\rm coll}$), are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available, generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy centrality classes, the $N_{\rm part}$ dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb-participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapitity of the number of participating nucleons is observed. Furthermore, at high-$p_{\rm T}$ the p-Pb spectra are found to be consistent with the pp spectra scaled by $N_{\rm coll}$ for all centrality classes. Our results represent valuable input for the study of the event activity dependence of hard probes in p-Pb collision and, hence, help to establish baselines for the interpretation of the Pb-Pb data.
dNdeta CL1.
dNdeta V0M.
dNdeta V0A.
We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.
Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.
Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.
Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.
The elliptic flow, $v_{2}$, of muons from heavy-flavour hadron decays at forward rapidity ($2.5 < y < 4$) is measured in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$~=~2.76 TeV with the ALICE detector at the LHC. The scalar product, two- and four-particle $Q$ cumulants and Lee-Yang zeros methods are used. The dependence of the $v_2$ of muons from heavy-flavour hadron decays on the collision centrality, in the range 0--40\%, and on transverse momentum, $p_{\rm T}$, is studied in the interval $3 < p_{\rm T} < 10$~GeV/$c$. A positive $v_2$ is observed with the scalar product and two-particle $Q$ cumulants in semi-central collisions (10--20\% and 20--40\% centrality classes) for the $p_{\rm T}$ interval from 3 to about 5 GeV/$c$. The $v_2$ magnitude tends to decrease towards more central collisions and with increasing $p_{\rm T}$. It becomes compatible with zero in the interval $6
pT-differential inclusive muon $v_{2}$ extracted with scalar product method.
pT-differential inclusive muon $v_{2}$ extracted with two-particle $Q$ cumulants method.
pT-differential inclusive muon $v_{2}$ extracted with scalar product method.
The nuclear modification factor, $R_{\rm AA}$, of the prompt charmed mesons ${\rm D^0}$, ${\rm D^+}$ and ${\rm D^{*+}}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV in two transverse momentum intervals, $5
${\rm D^+}$ meson $R_{\rm AA}$ in $5 < p_{\rm T} < 8$ GeV/c.
${\rm D^+}$ meson $R_{\rm AA}$ in $8 < p_{\rm T} < 16$ GeV/c.
${\rm D^{*+}}$ meson $R_{\rm AA}$ in $5 < p_{\rm T} < 8$ GeV/c.
The transverse momentum ($p_{\mathrm T}$) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC. The $p_{\mathrm T}$ spectra measured near central rapidity in the range $0.5
Normalized differential primary charged particle yield.
pp INEL cross section scaled by nuclear overlap.
Nuclear Modification Factor R_pPb in the central region.
Invariant yields of neutral pions at midrapidity in the transverse momentum range $0.6 < p_{T} < 12 GeV/c$ measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV are presented for six centrality classes. The pp reference spectrum was measured in the range $0.4 < p_{T} < 10 GeV/c$ at the same center-of-mass energy. The nuclear modification factor, $R_{\rm AA}$, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about $8-10$ for $5 \lesssim p_{T} \lesssim 7 GeV/c$. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.
Invariant differential yields of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV.
Invariant differential cross section of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of \sigma_{inel} of 3.9% is not included in the systematic error.
Invariant differential yields of PI0 produced in 0-5% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV.
The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high $p_{\rm T}$ particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-$k_{\rm T}$ jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track $p_{\rm T}$ between 0.15 GeV/$c$ and 2 GeV/$c$. For embedded jets reconstructed from charged particles with $p_{\rm T} > 0.15$ GeV/$c$, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/$c$ (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/$c$ measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/$c$, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/$c$ for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.
DeltaPT of random cones in the 10% most central events for three types of random cone probes with a minimum track PT of 0.15 GeV. (1) sampling all the events, (2) avoiding overlap with the leading jet candidate in the event and (3) after randomizing the (ETA,PHI) direction of the tracks hence destroying any correlations.
DeltaPT of random cones in the 10% most central events for three regions with a minimum track PT of 0.15 GeV. (1) the in-plane orientation where the angle between the reconstructed event plane and the random cone axis is < 30 degrees, (2) the out-of plane orientation where this angle is > 60 degrees and (3) the intermediate region where this angle is between 30 and 60 degrees.
Dependence of the standard deviation on the uncorrected charged particle multiplicity. As in figure 2 the data are given for three different random cone probes: (1) sampling all the events, (2) avoiding overlap with the leading jet candidate in the event and (3) after randomizing the (ETA,PHI) direction of the tracks hence destroying any correlations.
Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
The ALICE Collaboration has studied the inclusive production of the charmonium state $\psi(2S)$ in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy $\sqrt{s_{NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed at forward ($2.03
The cross section ratios B.R. sigma_Psi(2S)/ B.R. sigma_JPsi obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is systematic.
The double ratio [sigma(Psi(2S))/sigma(J/Psi)]_pA/[sigma(Psi(2S))/sigma(J/Psi)]_pp for p-Pb and Pb-p collisions. First uncertainty is statistical, the second one is the correlated systematic, while the third is the uncorrelated systematic.
The Psi(2S) nuclear modification factor RpA measured in pPb and Pbp collisions. The first uncertainty is statistical, the second one is the correlated systematic and the third the uncorrelated systematic.
Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV, and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb-Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb-Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb--Pb are in qualitative agreement with previous measurements in Au-Au at lower collision energies and with expectations from models that incorporate collective phenomena.
Relative fluctuation $\sqrt{C_m}/M(p_{\rm T})_m$ as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ in pp collisions at $\sqrt{s}$ = 0.9 TeV.
Relative fluctuation $\sqrt{C_m}/M(p_{\rm T})_m$ as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ in pp collisions at $\sqrt{s}$ = 2.76 TeV.
Relative fluctuation $\sqrt{C_m}/M(p_{\rm T})_m$ as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ in pp collisions at $\sqrt{s}$ = 7 TeV.