We have investigated the pp elastic scattering at the CERN Intersecting Storage Rings (ISR). We report results for centre-of-mass scattering angles between 30 and 100 mrad and for centre-of-mass energies of 23.5,30.7, 44.9 and 53 GeV. The elastic differential cross-section shows a diffraction-like shape with a sharp minimum at about t = −1.4 GeV 2 .
No description provided.
No description provided.
No description provided.
The spin correlation parameters A oosk and A ookk were measured at 0.834 and 0.995 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements were carried out in the angular region φ CM from 50° to ≃ 90°. The shape of the angular distribution A oosk (pp) = f ( θ CM ) changes rapidly from 0.8 to 1.0 GeV. The A ookk data points specify our previous measurements.
No description provided.
No description provided.
No description provided.
The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.
No description provided.
No description provided.
At the Cooler Synchrotron COSY/J\ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A$_{NN}$, A$_{SS}$, and A_${SL}$ for c.m. scattering angles between 30$^o$ and 90$^o$. Our data on A$_{SS}$ -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while A$_{NN}$ and A_${SL}$ are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.
Spin correlation parameters.
Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
The differential cross section for antiproton-proton elastic scattering has been measured for the beam momenta between 180 and 600 MeV/c. The real-to-imaginary ratio of the forward elastic scattering amplitude is derived from the Coulomb-nuclear interference. The ratio is found to be close to zero between 180 and 500 MeV/c with a minimum ofρ=−0.14 at 260 MeV/c. This result is contrary to model predictions. The phase shifts for thes-,p- andd-waves are extracted. The partial wave compositions of the elastic and inelastic cross sections have been determined. A large contribution of thep-wave is identified in the antiproton-proton interactions at small momenta.
No description provided.
No description provided.
No description provided.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
Results are presented of a measurement of the proton-proton elastic-scattering spin parameter CLL=(L,L;0,0) at 11.75 GeV/c and θc.m.=48°−90°. The value of CLL is nearly constant and is approximately -0.16 in this angular region. This behavior is consistent with only one of the many models proposed describing the interaction via the hard scattering of two quarks.
NUMERICAL VALUES OF DATA SUPPLIED BY H. SPINKA.
ESTIMATED VALUE OF CSS (90 DEG) DETERMINED FROM PRESENT DATA ON CLL AND DATA OF CRABB ET AL., (PRL 41, 1257) AND CROSBIE ET AL., (PR D23, 600) FOR CNN VIA THE RELATION CNN-CSS-CLL=1 (90 DEG). ERROR CONTAINS BOTH SYSTEMAT8ICS AND STATISTICS.
Recent data are presented on spin-spin correlation parameters CLL=(L,L;0,0) and CSL=(S,L;0,0) at forward angles from 1.18 to 2.47 GeV/c incident momenta in proton-proton elastic scattering. Values for ΔσL (inelastic) are derived and are shown to disagree with predictions of theoretical models attempting to describe p−p scattering without dibaryon resonances. Finally, the CLL and CSL data discriminate among various phase-shift solutions, and will lead to a clarification of the p−p phase shifts.
No description provided.
No description provided.
We have measured the Wolfenstein triple-scattering parameters R, D, and A′ at 1.9 GeV for p−p scattering at 90° in the c.m. system. We find that R=0.11±0.16, A′=−0.54±0.16, and D=0.91±0.21, where these parameters are defined in the c.m. system. The possibility of a vector character for the strong inter-actions is discussed. We conclude that neither a single vector-meson exchange nor a single pseudoscalar-meson exchange can account for the data. Spin effects are found to remain an important part of the nucleon-nucleon interaction at four-momentum transfer −t=1.8 (GeV/c)2.
'ALL'.
No description provided.
No description provided.