Date

Production of high transverse momentum particles in p p collisions in the central region at the CERN ISR

The British-Scandinavian ISR collaboration Alper, B. ; Boggild, H. ; Jarlskog, G. ; et al.
Phys.Lett.B 44 (1973) 521-526, 1973.
Inspire Record 85256 DOI 10.17182/hepdata.28095

The inclusive production al all charged particles of transverse momentum p T between 1.5 and 4.4 GeV/ c at centre of mass angles 90° and 59.4° from p-p-collisions with √ s = 44 and 53 GeV has been measured. No strong energy dependence is observed for these transverse momenta.

6 data tables match query

Errors are statistical only.

Errors are statistical only.

Errors are statistical only.

More…

Evidence for Dominant Vector Meson Production in Inelastic Proton Proton Collisions at 53-GeV Center-of-Mass Energy

Jancso, G. ; Albrow, M.G. ; Almehed, S. ; et al.
Nucl.Phys.B 124 (1977) 1-11, 1977.
Inspire Record 119346 DOI 10.17182/hepdata.35433

The Split Field Magnet facility at the CERN ISR has been used to measure inclusive resonance production in inelastic p-p collisions at a c.m. energy of 53 GeV. The mass spectrum of pairs of oppositely charged hadrons shows a strong correlation, which can be explained as a consequence of dominant vector meson production, accounting for more than 60% of all pions and kaons produced.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Centrality dependence of particle production in p-Pb collisions at $\sqrt{s_{\rm NN} }$= 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 91 (2015) 064905, 2015.
Inspire Record 1335350 DOI 10.17182/hepdata.68361

We report measurements of the primary charged particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined using different event activity estimators, i.e. charged particle multiplicities measured in three disjunct pseudorapidity regions as well as the energy measured at beam rapidity (zero-degree). The procedures to determine the centrality, quantified by the number of participants ($N_{\rm part}$), or the number of nucleon-nucleon binary collisions ($N_{\rm coll}$), are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available, generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy centrality classes, the $N_{\rm part}$ dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb-participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapitity of the number of participating nucleons is observed. Furthermore, at high-$p_{\rm T}$ the p-Pb spectra are found to be consistent with the pp spectra scaled by $N_{\rm coll}$ for all centrality classes. Our results represent valuable input for the study of the event activity dependence of hard probes in p-Pb collision and, hence, help to establish baselines for the interpretation of the Pb-Pb data.

10 data tables match query

dNdeta CL1.

dNdeta V0M.

dNdeta V0A.

More…

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

23 data tables match query

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.

More…

Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables match query

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables match query

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

MEASUREMENTS OF D (SIGMA) DE (T) IN COLLISIONS OF LIGHT NUCLEI AT S(NN)**(1/2) = 31.5-GEV

The AXIAL FIELD SPECTROMETER collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 231 (1989) 359-364, 1989.
Inspire Record 287781 DOI 10.17182/hepdata.29771

Calorimeter measurements of dσ de t for pp, dd, pα , and αα collisions at S nn =31.5 GeV are presented for the pseudorapidity interval | η cm | ⩽ 0.7, extending over eight decades to E t ⩾ 30 GeV. The data are compared with models that predict nuclear cross sections directly from pp data, under the assumption of independent nucleon scatters.

1 data table match query

The distributions are fitted D(SIG)/D(ET)=CONST*ET**POWER*EXP(-SLOPE*ET).


Evidence for dominance of pomeron like exchange in p + p ---> n + n + pi at 19 gev/c

Boggild, H. ; Hansen, K. ; Johnstad, H. ; et al.
Phys.Lett.B 30 (1969) 369-372, 1969.
Inspire Record 56657 DOI 10.17182/hepdata.28910

The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .

1 data table match query

A Comparison of $\bar{p} p$ and $p p$ Interactions in the Central Region at $\sqrt{s}=53$-{GeV}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 108 (1982) 58-62, 1982.
Inspire Record 168036 DOI 10.17182/hepdata.31012

The inclusive production cross sections of pions, kaons, protons, and antiprotons in p p and pp interactions at √ s =53 GeV are compared in the kinematic range | y | < 0.8 and p T < 1.5 GeV/ c . We observe differences in the K + /K − and p /p ratios for the two data samples. Although the bulk of the particles are produced with the same momentum and rapidity distributions in p p and pp collisions, we observe difference in these distributions for produced protons and antiprotons.

2 data tables match query

No description provided.

No description provided.


Transverse momentum spectra in Au + Au and d + Au collisions at s(NN)**(1/2) = 200-GeV and the pseudorapidity dependence of high p(T) suppression.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 91 (2003) 072305, 2003.
Inspire Record 622645 DOI 10.17182/hepdata.89442

We present spectra of charged hadrons from Au+Au and d+Au collisions at $\sqrt{s_{NN}}=200$ GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from ${\rm p}+\bar{{\rm p}}$ collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at $\eta=0$ and $\eta=2.2$ evidence a strong suppression in the high $p_{T}$ region ($>$2 GeV/c). In contrast, the d+Au nuclear modification factor (at $\eta=0$) exhibits an enhancement of the high $p_T$ yields. These measurements indicate a high energy loss of the high $p_T$ particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.

8 data tables match query

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=0$, per centrality

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$ in $\mathrm{d}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=0$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\mathrm{h}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=2.2$, per centrality

More…