Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $
Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.
Inclusive electrons yield versus transverse momentum in P+P collisions.
D0 yield versus transverse momentum in D+AU collisions.
We report the first observation of $K^{\star}(892)^{0}\to\pi K$ in relativistic heavy ion collisions. The transverse momentum spectrum of $(K^{\star0}+\bar{K}^{\star0})/2$ from central Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV is presented. The ratios of the $K^{\star0}$ yield derived from these data to the yields of negative hadrons, charged kaons, and $\phi$ mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable $e^{+}e^{-}$, $pp$, and $\bar{p}p$ results. The data indicate no dramatic reduction of $K^{\star0}$ production in relativistic heavy ion collisions despite expected losses due to rescattering effects.
K*0 to negative hadron ratio using hadron data from Adler et al PRL 87,112303(2001).
K*0 to kaon ratio using STAR kaon data.
PHI to K*0 ratio measured in this study.
Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3). Shown is the low FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the away side (|$\Delta\phi$ - $\pi$| < $\pi$/3. Shown is the high FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3) side. Shown is the high-activity data after subtracting the unscaled. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
We present measurements of $\Omega$ and $\phi$ production at mid-rapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of $N(\Omega^{-}+\Omega^{+})/(2N(\phi))$. These ratios as a function of transverse momentum ($p_T$) fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at $\sqrt{s_{NN}}$ = 19.6, 27 and 39 GeV, and in central collisions at 11.5 GeV in the intermediate $p_T$ region of 2.4-3.6 GeV/c. We further evaluate empirically the strange quark $p_T$ distributions at hadronization by studying the $\Omega/\phi$ ratios scaled by the number of constituent quarks. The NCQ-scaled $\Omega/\phi$ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to $\sqrt{s_{NN}} >= 19.6$ GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark-matter to hadronic matter at collision energies below 19.6 GeV.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
We present $\Lambda\Lambda$ correlation measurements in heavy-ion collisions for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednick\'{y}-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the $\Lambda\Lambda$ correlation function and interaction parameters for di-hyperon searches are discussed.
The invariant mass distribution for $\Lambda$ and $\bar{\Lambda}$ produced in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality. The $\Lambda$ and $\bar{\Lambda}$ candidates lying in the mass range 1.112 to 1.120 GeV/c^2 were selected for the correlation measurement.
The $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality.
The combined $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function for 0-80% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.
Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.
Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.
We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $
The mean square of $p_T$.
Nuclear absorption cross section.
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.
Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from 0-10% most-central Au+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.
Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for non-pion triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.