We present a search for electroweak production of single top quarks in $\approx 90$ $pb^{-1}$ of data collected with the DZero detector at the Fermilab Tevatron collider. Using arrays of neural networks to separate signals from backgrounds, we set upper limits on the cross sections of 17 pb for the s-channel process $p\bar{p} \to tb + X$, and 22 pb for the t-channel process $p\bar{p} \to tqb + X$, both at the 95% confidence level.
We present a measurement of the top quark pair (ttbar) production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb-1 of data collected by the DO detector at the Fermilab Tevatron Collider. We select events in the dilepton final states ee, emu and mumu based on kinematical properties consistent with ttbar events. For a top quark mass of 175 GeV, we measure a top pair production cross section sigma(ttbar) = 8.6 +3.2-2.7 (stat) +/-1.1 (syst) +/-0.6 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section.
We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.
No description provided.
No description provided.
We present a measurement of the ttbar pair production cross section in ppbar collisions at sqrt(s) = 1.96 TeV utilizing approximately 425 pb-1 of data collected with the D0 detector. We consider decay channels containing two high pT charged leptons (either e or \mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e\mu, ee, or \mu\mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/-1.4(stat} +/- 1.0(syst) pb.
TOP TOPBAR production cross section for top quark mass 175 GeV.
TOP TOPBAR production cross section for the current Tevatron average top quark mass 170.9 GeV.. Error contains both statistics and systematics.
We present a measurement of the differential cross section for $t\bar{t}$ events produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV as a function of the transverse momentum ($p_T$) of the top quark. The selected events contain a high-$p_T$ lepton ($\ell$), four or more jets, and a large imbalance in $p_T$, and correspond to 1 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector. Each event must have at least one candidate for a $b$ jet. Objects in the event are associated through a constrained kinematic fit to the $t\bar{t}\to WbW\bar{b} \to \ell\nu b q\bar{q}'\bar{b}$ process. Results from next-to-leading-order perturbative QCD calculations agree with the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo event generators using QCD calculations at different levels of precision.
Total cross section for TOP TOPBAR production integrating over PT.
The inclusive PT spectra for TOP TOPBAR production.
Results are presented on a measurement of the ttbar pair production cross section in ppbar collisions at sqrt{s} = 1.8 TeV from nine independent decay channels. The data were collected by the Dzero experiment during the 1992-1996 run of the Fermilab Tevatron Collider. A total of 80 candidate events are observed with an expected background of 38.8 +- 3.3 events. For a top quark mass of 172.1 GeV/c^2, the measured cross section is 5.69 +- 1.21 (stat) +- 1.04 (sys) pb.
Measured top quark pair production cross section in the different channels and the various averages, including the overall average.
A change in estimated integrated luminosity (from 226 pb$^{-1} to 257 pb$^{-1}$ leads to a corrected value for ${\sigma (p \bar p \to Z) \cdot}$Br${(Z \to \tau \tau)}$ of $209\pm13(stat.)\pm16(syst.)\pm13(lum) pb.
Total cross section for W boson pair production. The second systematic (DSYS) error is due to the uncertainty in the luminosity.
We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
Ratio of the cross sections.
Number of observed events per 5 GeV bin for the >=`1Jet sample. Data read from plots.
Number of observed events per 5 GeV bin for the >=2Jet sample. Data read from plots.
We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.
PT distribution of the first jet in events with one or more jets with additional constraints on the electrons.
PT distribution of the first jet in events with one or more jets.
PT distribution of the second jet in events with two or more jets with additional constraints on the electrons.
The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.
Measured differential cross section for the production of isolated photons.