The reaction e + e − →e + e − η ′(958) has been observed by detecting the final state π + π − γ . The two-photon width of the η′ has been measured to be Γ ( η ′→ γγ ) = 5.1±0.4±0.7 keV. A search for the ι (1440) has been made in the ϱ 0 γ final state. An upper limit has been obtained for the product Γ ( ι (1440) → γ ) gg ), B ( ι → ϱ 0 γ ) < 1.5 keV (95%CL).
No description provided.
We observe γγ → η′ production in the reaction e + e − → e + e − π + π − γ. We measure the product γ γγ ( η ′) B ( η ′ → ϱ 0 γ ) to be 1.14 ± 0.08 ± 0.11 keV. A first measurement of the γγ → η′ transition form factor is made for Q 2 up to 1 GeV 2 .
No description provided.
The production of very large transverse momentum hadron jets has been measured in the UA2 experiment at the CERN p p Collider for s = 540 GeV using a highly segmented calorimeter. The range of previously available cross sections for inclusive jet production is extended to p T = 150 GeV and the two-jet invariant mass distribution to m jj = 280 GeV with the largely increased data sample collected during the 1983 running period. The results are compared with the predictions of QCD models.
LISTED ERRORS INCLUDE STATISTICAL AND THE PT-DEPENDENT UNCERTAINTIES. THE ADDITIONAL OVERALL SYSTEMATIC UNCERTAINTY IS 45PCT.
LISTED ERRORS INCLUDE STATISTICAL AND THE M-DEPENDENT UNCERTAINTIES. THE ADDITIONAL OVERALL SYSTEMATIC UNCERTAINTY IS 45PCT.
We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
The reactions γ p→K + K − π 0 (p) and γ p→ K s 0 K ± π ± (p) have been measured using tagged photons in the energy range 20 to 70 GeV. No resonance structure is observed in either of the K K π invariant mass distributions, which range from threshold up to ∼ 3 GeV. The photoproduction cross sections for φπ 0 and K ∗ (892)K are presented and are compared with theoretical predictions. No evidence has been found for the photoproduction of φ′ (1680).
No description provided.
No description provided.
NO EVIDENCE FOR RESONANT STRUCTURE AT PHIPRIME(1680).
We have measured the production of one and two large transverse momentum hadrons in p p and pp interactions in the range 2 < p T < 6 GeV/ c for the central rapidity region |y| < 0.9 at s = 63 and 31 GeV . No statistically significant difference between p p and pp collisions is observed. The results are in accordance with lowest order QCS perturbative calculations and rule out a large contribution of Constituent Interchange Model (CIM), di-quark of quark-fusion subprocesses in this kinematic range.
No description provided.
No description provided.
We have measured the electron, muon, and charged-hadron pair production rates in two-phonon interactions for invariant masses above 2.0 GeV over a large of momentum transfer. The cross sections for electron and muon pairs show good agreement with the QED predictions at both small and large momentum transfer. The observed rate of hadron production is less than 6% of the rate that QED predicts for point-like hadrons, consistent with recent leading-order QCD calculations.
LOW Q**2 CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS IN THE INVARIANT MASS FOR MUON AND ELECTRON PAIRS IN THE UNTAGGED, LOW Q**2 REGION.
HIGH Q**2 CROSS SECTIONS.
None
No description provided.
No description provided.
No description provided.
The jet character of the hadronic final states produced ine+e− annihilations is studied in terms of jet measures such as thrust, sphericity, jet opening angle and jet masses, in the energy range 7.7 to 31.6 GeV. All distributions and averages have been corrected for detector effects and initial state radiation. The energy dependence of the averages of these jet quantities is used to estimate the contributions due to perturbative QCD and fragmentation effects. Correlations between the jet measures and the multiplicity of charged hadrons are also presented.
DIFFERENTIAL THRUST DISTRIBUTIONS WHERE THRUST IS MAX(SUM(ABS(PLONG))/SUM(ABS(P))).
MEAN THRUST VALUES AS A FUNCTION OF CM ENERGY.
DIFFERENTIAL SPERICITY DISTRIBUTIONS WHERE SPHERICITY IS 3/2*MIN(SUM(PT**2)/SUM(ABS(P))).
Measurements of pp→μ+μ−+X at s=44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN intersecting storage rings and confirm scaling to 5%. The observed μ+μ− yield is a factor of 1.6±0.2 larger than estimated from a simple parton model but is consistent with QCD. The pT dependence of the muon pairs agrees well with expectations from QCD.
No description provided.