The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2 θ w = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants u L 2 and L 2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.
No description provided.
No description provided.
Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n 2 − F p 2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.
No description provided.
The fragmentation of the hadronic system into Λ, Σ(1385), K ) and K ∗ (892) in deep-inelastic charged-current interactions of high energy neutrinos and antineutrinos with proton and neutron is analyzed. The results obtained for the production of these particles from the various initial states are compared with each other and with the predictions of the Lund fragmentation model. This comparison shows that a spectator diquark does not fragment as a whole in a fraction of the interactions. The role of the sea quarks in the baryon formation process is underlined. Strange vector and pseudoscalar mesons are likely to be produced at similar rates.
No description provided.
SIG(C=LAMBDA) denotes the inclusive LAMBDA production in the same reaction.
SIG(C=KS) denotes the inclusive KS production in the same reaction.
We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.
No description provided.
No description provided.
No description provided.
12,100 νD and 10,500\(\bar vD\) charged current interactions in deuterium measured in the BEBC bubble chamber were used to obtain the complete set of structure functions of proton and neutron. Thex andQ2 dependence of the structure functions of up and down valence quarks and antiquarks are presented and discussed. The Adler and Gross-Llewellyn Smith sum rules have been tested at differentQ2 values. A QCD analysis of the four non singlet structure functionsxF3νN,xuv,xdv andF2νn−F2νp has been performed yielding values ofΛLO between 100 and 300 MeV.
No description provided.
No description provided.
No description provided.
Some experimental properties of the charged hadronic fragments are compared for νp, νn,\(\bar vp\) and\(\bar vn\) interactions: multiplicities of forward and backward going particles,xF distributions for pions, fragmentation functions and theirQ2 andW2 dependence. The results are compared with the predictions of the Lund fragmentation model.
No description provided.
Data are presented on the Gross-Llewellyn Smith sum rule obtained from combined narrow-band neon and Freon bubble-chamber neutrino-antineutrino experiments. Remarkably no significant deviation from the parton-model prediction for the sum rule is observed at very low values of q2≲1 GeV2. Limits on the effective QCD scale parameter Λ and on the magnitude of the twist-4 correction are set. The best fit, neglecting higher-twist contributions, gives Λ=92−36+20 MeV.
NACHTMANN MOMENT IS EVALUATED (IE TARGET MASS COEERCTIONS INCLUDED).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
Exposures of the Ne/H 2 filled Big European Bubble Chamber (BEBC) to a dichromatic neutrino (antineutrino) beam produced by 400 GeV protons of the CERN SPS yielded ∼ 3100 events with a negative, and ∼ 1100 with a positive, muon. The neutrino flux is determined from the muon flux in the shielding. Assuming a linear energy dependence of the cross section, the values σ E between 20 and 200 GeV are found to be 0.657 ± 0.012 (stat.) ± 0.027 (syst.) and 0.309 ± 0.009 (stat.) ± 0.013 (syst.) cm 2 (GeV nucleon) −1 , for neutrinos and antineutrinos, respectively. The scaling variable q 2 E decreases significantly with increasing energy both for neutrinos and antineutrinos.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.