Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.
Rates of charged current events as a function of Q**2.
Rates of neutral current events as a function of Q**2.
Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.
The decay B0 -> J/psi K0_S is reconstructed with J/psi -> e+ e- or mu+ mu- and K0_S -> pi+ pi-. From the full ALEPH dataset at LEP1 of about 4 million hadronic Z decays, 23 candidates are selected with an estimated purity of 71%. They are used to measure the CP asymmetry of this decay, given by sin 2beta in the Standard Model, with the result sin 2beta = 0.84 +0.82-1.04 +-0.16. This is combined with existing measurements from other experiments, and increases the confidence level that CP violation has been observed in this channel to 98%.
Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates.
The cross section for the production of Z boson pairs is measured using the data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the visible final states are selected, measuring the cross section of this process. The special case of final states containing b quarks is also investigated. All results are in agreement with the Standard Model predictions.
Two methodics are used for evaluation of the cross section's values.
The result is combination for different energies.
Inclusive branching ratios involving b to tau transitions are measured in approximately four million hadronic Z decays collected by the ALEPH detector at LEP. The fully-inclusive branching ratio b -> tau nu X and the semi-inclusive branching ratio b -> tau nu D*+/- X are measured to be (2.43 +/- 0.20 +/- 0.25)% and (0.88 +/- 0.31 +/- 0.28)%, in agreement with the standard model predictions. Upper limits on the branching fractions b -> tau nu and b -> s nu nubar are set to 8.3 10**-4 and 6.4 10**-4 at the 90% C.L. These results allow a 90% C.L. lower limit of 0.40 (GeV/c**2)**-1 to be set on the tan(beta)/mH+/- ratio, in the framework of type-II two-Higgs-doublet mode
TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow as a function of centrality defined as nch/nmax. Also given is epsilon, the initial space eccentricity of the overlap region, as well as the cumulative fraction of events starting with the most central. From the results of the study of non-flow contributions by different subevent selections and the maximum magnitudes of the first and higher-order harmonics, we estimate a systematic error for v2 of about 0.007, with somewhat smaller uncertainty for the mid-centralities where the resolution of the event plane is high.
Elliptic flow as a function of transverse momen-tum for minimum bias events
Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.
Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.
No description provided.
We report a measurement of the differential cross section for W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt{s} = 1.8 TeV. The data were collected by the D0 experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb^{-1}. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.
Measurement of the PT distribution of W boson production for the W --> e nuchannel. The nominal PT is where the predicted function equals its mean value o ver the bin.
Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.
The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.
The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.
The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.
We have studied the diffractive dissociation into di-jets of 500 GeV/c pions scattering coherently from carbon and platinum targets. Extrapolating to asymptotically high energies (where t_{min} approaches 0) we find that when the per-nucleus cross-section for this process is parameterized as $ \sigma = \sigma_0 A^{\alpha} $, $ \alpha $ has values near 1.6, the exact result depending on jet transverse momentum. These values are in agreement with those predicted by theoretical calculations of color-transparency.
Cross sections is fitted to A**POWER.