Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.
Numerical values supplied by S. Klein.
Extrapolation over full x range using LUND Monte Carlo.
We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.
Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
Extrapolated to full momentum range by Monte-Carlo.
Statistical errors only.
No description provided.
The production of Λ hyperons in e+e− annihilation has been measured as a function of their total momenta, transverse momenta, and the event thrust. The total production rate is 0.213±0.012±0.018 Λ or Λ¯ per hadronic event. The observation of correlations in rapidity and angles for events with two detected Λ decays supports fragmentation models with local baryon-number compensation.
No description provided.
No description provided.
No description provided.
We have studied D* production mechanisms using data from a photoproduction experiment at the Fermilab Tagged Photon Spectrometer. A large sample of charged D*’s was selected via the clean signature of the cascade decay D*→D0π+ and subsequently D0→K−π+ or D0→K−π+π0. The cross section for the process γp→(D*++anything)p at an average energy of 105 GeV was measured to be 88±32 nb. Only (11±7)% of D*’s were found to be consistent with being accompanied solely by a D¯* or a D¯; the remaining events contain additional particles. The distribution of the production angle of the D* in the photon-fragmentation-system center of mass is strongly anisotropic and consistent with the form f(θ*)=cos4θ*. We set a limit on the associated-production-process cross section σ(γp→(D¯*−+anything)Λc) x)<60 nb (90% C.L.).
No description provided.
No description provided.
Measurements are presented of the inclusive charged-particle cross sections s dσdx for e+e− annihilation at center-of-mass energies of 5.2, 6.5, and 29.0 GeV. Significant scale breaking is observed in these cross sections.
CROSS SECTION S*D(SIG)/DX FOR CHARGED PARTICLES AT SQRT(S) = 5.2, 6.5 AND 29.0 GEV. NUMERICAL VALUES OF DATA TAKEN FROM THESIS OF J.F. PATRICK LBL-14585.
The scale cross section s d σ d x p for inclusive charged-particle production in e + e − annihilation has been studied for c.m. energies W between 12.0 and 36.7 GeV. Scale breaking is observed. For x p >0.2 the cross section decreases by ≈20% when W increases from 14 to 35 GeV. The production angular distribution was used to separate the longitudinal and transverse cross-section contributions and to determine the ratio of the structure functions m W 1 and v W 2 .
DATA FROM TABLE 1A IN PREPRINT DESY-82-013.
DATA FROM TABLE 1B IN PREPRINT DESY-82-013.
DATA FROM TABLE 1C IN PREPRINT DESY-82-013. TOTAL CROSS SECTION TAKEN FROM EARLIER TASSO MEASUREMENTS, PL 113B, 499. NORMALIZED CROSS SECTION IS NOT SUBJECT TO THE 4.5 PCT NORMALIZATION ERROR AND A POSSIBLE 2-3 PCT CONTRIBUTION FROM THE WEAK NEUTRAL CURRENT IS TAKEN CARE OF.
The inclusive production of π ± mesons in e + e − annihilation has been measured at c.m. energies of 14, 22 and 34 GeV for pion momenta between 0.3 ans 10 GeV/ c . The fraction of pions among the charged hadrons is above 90% at 0.4 GeV/ c and decreases to about 50% at high momenta. The scaled cross sections ( s β ) d σ d x at 14, 22 and 34 GeV as well as the 5.2 GeV data from DASP have a rather similar x dependence. After integration over the x range from 0.2 to 0.6 the cross sections indicate a monotonic decrease with increasing centre-of-mass energy.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
The process e + e − → π 0 + anything has been measured at c.m. energies of 14 and 34 GeV for π 0 energies between 0.5 and 4 GeV. The ratio of π 0 to π ± production for π momenta between 0.5 and 1.5 GeV/ c is measured to be 2 σ ( π 0 )/ [ σ ( π + ) + σ ( π − )] = 1.3 ± 0.4 (1.2 ± 0.4) at 14 (34) GeV. The scaled cross section ( s / μ )d σ /d x when compared with lower energy (4.9–7.4 GeV) π 0 data indicates a substantial scaling violation.
COMPARISON OF PI0 WITH CHARGED PION CROSS SECTIONS (SCALED BI 1/S TO SAME ENERGIES).
No description provided.
No description provided.