Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.
No description provided.
We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$
No description provided.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$
Statistical errors only.
Statistical errors only.
ALPHAS from the EEC O(ALPHAS**2) measurement.
Inclusive direct photon invariant cross sections have been measured in both p p and pp collisions at √ s = 24.3 GeV at the CERN SPS, permitting the first measurement of the difference of the p p and pp cross sections. The direct photon cross section in p p collisions has been found to be systematically larger than that in pp collisions, which indicates a significant contribution of the q q annihilation term as predicted by theoretical calculations.
No description provided.
No description provided.
No description provided.
We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.
The second systematic error comes from the theoretical uncertainties.
A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .
No description provided.
Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.
A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata
Thrust distribution corrected for detector acceptance and initial state photon radiation.
Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.
Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.
None
Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.
Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.
Experimental differential Thrust distributions.
Experimental differential Oblateness distributions.
Experimental differential C-parameter distributions.