Date

Proton dissociative rho and elastic phi electroproduction at HERA

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 75 (1997) 607-618, 1997.
Inspire Record 443293 DOI 10.17182/hepdata.44590

The electroproduction of rho mesons with proton diffractive dissociation for Q^2 > 7 GeV^2 and the elastic electroproduction of Phi mesons for Q^2 > 6 Gev^2 are studied in e^+ p collisions at HERA with the H1 detector, for an integrated luminosity of 2.8 pb-1. The dependence of the cross sections on P_t^2 and Q^2 is measured, and the vector meson polarisation obtained. The cross section ratio between proton dissociative and elastic production of rho mesons is measured and discussed in the framework of the factorisation hypothesis of diffractive vertices. The ratio of the elastic cross section for Phi and rho meson production is investigated as a function of Q^2.

11 data tables

Corrected PT**2 distribution for RHO production from the proton dissociative sample. Statistical errors only.

Cross sections and ratio of proton dissociative to elastic cross sections.

Cross sections and ratio of proton dissociative to elastic cross sections.

More…

First observation of inclusive B decays to the charmed strange baryons Xi/c0 and Xi/c+.

The CLEO collaboration Barish, B. ; Chadha, M. ; Chan, S. ; et al.
Phys.Rev.Lett. 79 (1997) 3599-3603, 1997.
Inspire Record 442910 DOI 10.17182/hepdata.47081

Using data collected in the region of the Upsilon(4S) resonance with the CLEO II detector operating at the Cornell Electron Storage Ring CESR, we present the first observation of B mesons decaying into the charmed strange baryons Xi_c0 and Xi_c+. We find 79 +/- 27 Xi_c0 and 125 +/- 28 Xi_c+ candidates from B decays, leading to product branching fractions of BR(Bbar -> Xi_c0 X)BR(Xi_c0 -> Xi- pi+) = (0.144 +/- 0.048 +/- 0.021) x 10~-3 and BR(Bbar -> Xi_c+ X)BR(Xi_c+ -> Xi- pi+ pi+) = (0.453 +/- 0.096 +0.085-0.065) x 10~-3.

2 data tables

Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.

Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.