Date

Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

2 data tables

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).


Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…

Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024911, 2016.
Inspire Record 1394434 DOI 10.17182/hepdata.142336

Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.

14 data tables

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Cu+Cu collisions at RHIC from PHENIX.

More…

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

7 data tables

Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…

Version 3
Single electron yields from semileptonic charm and bottom hadron decays in Au$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034904, 2016.
Inspire Record 1393529 DOI 10.17182/hepdata.99752

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.

4 data tables

Bottom and charm hadron invariant yields as a function of $p_{T}$.

Bottom hadron fraction with respect to heavy flavor electron as a function of $p_{T}$.

Bottom and charm hadron $R_{AA}$ as a function of $p_{T}$.

More…

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

2 data tables

Cocktail of hadronic sources for the 2010 run using the PYTHIA generator for the open heavy flavor contributions.

Invariant mass spectrum of $e^+e^-$ pairs in MB Au+Au collisions within the PHENIX acceptance compared to the cocktail of expected decays.


Coincidence electroproduction of single neutral pions in the resonance region at q 2 = 0.5 (GeV/ c ) 2

Latham, A. ; Allison, J. ; Booth, I. ; et al.
Nucl.Phys.B 156 (1979) 58-92, 1979.
Inspire Record 1392686 DOI 10.17182/hepdata.836

Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .

21 data tables

No description provided.

No description provided.

No description provided.

More…

Transverse-target-spin asymmetry in exclusive $\omega$-meson electroproduction

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 75 (2015) 600, 2015.
Inspire Record 1391139 DOI 10.17182/hepdata.75465

Hard exclusive electroproduction of $\omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $\pi\omega$ transition form factor.

4 data tables

The amplitudes of the five sine and two cosine modulations as determined in the entire kinematic region. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.

The definition of intervals and the mean values of the kinematic variables.

Results on the kinematic dependences of the five asymmetry amplitudes $A_{UT}$ and two amplitudes $A_{UU}$. The first two columns correspond to the $-t'$ intervals $0.00 - 0.07 - 0.20$ GeV$^2$ and the last two columns to the $Q^{2}$ intervals $1.00 - 1.85 - 10.00$ GeV$^2$. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.

More…

Measurements of elliptic and triangular flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 115 (2015) 142301, 2015.
Inspire Record 1384274 DOI 10.17182/hepdata.141742

We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

1 data table

Results for $v_2$ and $v_3$ as a function of $p_T$ for inclusive charged hadrons at midrapidity in 0-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.


Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and $\phi$ meson in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 062301, 2016.
Inspire Record 1383879 DOI 10.17182/hepdata.71571

We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $\phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $\sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $\phi$ and $\Omega$ $v_{2}$ is similar to that of $\pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$\%$ and 30-80$\%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $\phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$\%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.

23 data tables

No description provided.

No description provided.

No description provided.

More…