We present a measurement of the ttbar production cross section using events with one charged lepton and jets from ppbar collisions at a center-of-mass energy of 1.96 TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb-1 of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 +- 1.8 events are expected from background contributions. We measure a ttbar production cross section of 5.6^{+1.2}_{-1.1} (stat.) ^{+0.9}_{0.6} (syst.) pb.
TTBAR production cross section.
The Standard Model predictions for $W\gamma$ and $Z\gamma$ production are tested using an integrated luminosity of 200 pb$^{-1}$ of \ppbar collision data collected at the Collider Detector at Fermilab. The cross sections are measured selecting leptonic decays of the $W$ and $Z$ bosons, and photons with transverse energy $E_T>7$ GeV that are well separated from leptons. The production cross sections and kinematic distributions for the $W\gamma$ and $Z\gamma$ are compared to SM predictions.
Measured cross sections for W+ GAMMA production.
Measured cross sections for Z0 GAMMA production.
We report a measurement of the ttbar production cross section using the CDF II detector at the Fermilab Tevatron. The data consist of events with an energetic electron or muon, missing transverse energy, and three or more hadronic jets, at least one of which is identified as a b-quark jet by reconstructing a secondary vertex. The background fraction is determined from a fit of the transverse energy of the leading jet. Using 162+-10 /pb of data, the total cross section is found to be 6.0+-1.6(stat.)+-1.2(syst.) pb, which is consistent with the Standard Model prediction.
Cross section for different assumed TOP quark masses.
The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.
The cross sections for single vector boson production in the We ν and Zee channels are measured from the data collected by the ALEPH detector at LEP for centre-of-mass energies between 183 and 209 GeV. These data correspond to a total integratedluminosity of 683 pb −1 . Single-W production is studied in both hadronic and leptonic decay channels. Hadronic and dimuon decays are used for single-Z production. The measured cross sections agree with the Standard Model predictions.
Measured cross sections for single W production in the leptonic and hadronic decay channels of the W separately and combined.
The measured single Z0 production cross section.
Z0 --> MU+ MU- cross section averaged over all c.m. energies.
The W + W- production cross section is measured from a data sample corresponding to a total integrated luminosity of 683 pb-1, collected by the ALEPH experiment at LEP at centre-of-mass energies from
The measured cross section for the E NU E NU final state. The DSYS error is the typical systematic error.
The measured cross section for the E NU MU NU final state. The DSYS error is the typical systematic error.
The measured cross section for the E NU TAU NU final state. The DSYS error is the typical systematic error.
We report a measurement of the ttbar production cross section using dilepton events with jets and missing transverse energy in ppbar collisions at a center-of-mass energy of 1.96 TeV. Using a 197 +/- 12 pb-1 data sample recorded by the upgraded Collider Detector at Fermilab, we use two complementary techniques to select candidate events. We compare the number of observed events and selected kinematical distributions with the predictions of the Standard Model and find good agreement. The combined result of the two techniques yields a ttbar production cross section of 7.0 +2.4/-2.1(stat.) +1.6/-1.1(syst.) +/- 0.4(lum.) pb.
Measured values of cross section for a top mass of 175 GeV. The second DSYS error is the uncertainty in the luminosity.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.
These final results on e+e- -> W+W- production cross-section measurements at LEP2 use data collected by the DELPHI detector at centre-of-mass energies up to 209 GeV. Measurements of total cross-sections, W angular differential distributions and decay branching fractions, and the value of the CKM element |V_{cs}| are compared to the expectations of the Standard Model. These results supersede all values previously published by DELPHI.
W pair production cross section for the fully hadronic channel.
W pair production cross section for the semi-leptonic decay channel.
W pair production cross section for the fully leptonic decay channel.