Associated strangeness production in the reactions γp → K + Λ and γp → K + Σ 0 was measured with the SAPHIR detector at the electron stretcher ring ELSA at Bonn. Data on total and differential cross sections and on hyperon polarizations are presented. The total cross section for Λ production shows a strong threshold enhancement whereas the Σ 0 data have a maximum at about E γ =1.45 GeV. Along with the angular decomposition of the differential cross section into polynomials, this suggests resonance production. However, the angular distributions of both hyperon polarizations vary only slightly with the photon energy. Λ and Σ 0 polarizations show opposite signs and change sign over the angular range.
Total cross section for the reaction GAMMA P --> K+ LAMBDA.
Total cross section for the reaction GAMMA P --> K+ SIGMA0.
Differential cross section for the reaction GAMMA P --> K+ LAMBDA in the GAMMA energy range 0.90 to 1.10 GeV in three energy bins.
Enhanced production of ΛΛ pairs, above the prediction of a two-step process model, is observed near threshold (around the masses of 2.23 – 2.26 GeV/c 2 ) in the 12 C(K − ,K + ) reaction at P K − = 1.66GeV/c using a scintillating fiber target. The differential cross section for the ΛΛ production averaged over 2.3° ≤ $$ K + ≤ 14.7° in the momentum region 0.95 ≤ p K + ≤ 1.3GeV/c was found to be 7.6 ± 1.3 μb/sr, and that for the enhancement approximately 3 μb/sr.
No description provided.
No description provided.
No description provided.
The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.
The double strangeness exchange reaction ( K − , K + ) is investigated with respect to the sub-threshold production of scalar and vector mesons ( f 0 / a 0 / φ ) decaying into K + K − and the two-step processes induced by intermediate mesons and Ξ − hyperons at p k − = 1.66 GeV/ c using a scintillating fiber active target. The differential cross section ( 〈 dσ dΩ L 〉) averaged over the angular interval (2.3° ⩽ θ K + L ⩽ 14.7°) for the sub-threshold f 0 / a 0 / φ meson production with the K + K − decay is 11 ± 6 μ b/sr at 0.6 ⩽ p K 1 < 0.95 GeV/ c . The present result differs significantly from the theoretical calculation which predicts the contribution of the f 0 / a 0 / φ meson production to be predominant in the ( K − , K + ) reaction below p K + = 0.95 GeV/ c . We found a sizable contribution from two-step ( K − , K + processes, characterized by production of two S = −1 hyperons, consistent with the result of the intra-nuclear cascade (INC) model calculation with respect to the meson-induced hyperon (or hyperon resonance) pair production in the momentum region 0.6 ⩽ p K + < 0.95 GeV/ c . The observed enhancement of the cross section for the two-step ΛΛ production beyond the prediction of the INC model at p K + ⋍ 1.1 GeV /c could be due to the Ξ − p → ΛΛ reaction in 12 C.
No description provided.
No description provided.
No description provided.
Differential cross sections for Compton scattering by the proton have been measured in the energy interval between 200 and 500 MeV at scattering angles of θ cms = 75° and θ cms = 90° using the CATS, the CATS/TRAJAN, and the COPP setups with the Glasgow Tagger at MAMI (Mainz). The data are compared with predictions from dispersion theory using photo-meson amplitudes from the recent VPI solution SM95. The experiment and the theoretical procedure are described in detail. It is found that the experiment and predictions are in agreement as far as the energy dependence of the differential cross sections in the Δ-range is concerned. However, there is evidence that a scaling down of the resonance part of the M 1+ 3 2 photo-meson amplitude by (2.8 ± 0.9)% is required in comparison with the VPI analysis. The deduced value of the M 1+ 3 2 - photoproduction amplitude at the resonance energy of 320 MeV is: |M 1+ 3 2 | = (39.6 ± 0.4) × 10 −3 m π + −1 .
No description provided.
No description provided.
Experimental measurements of differential cross-sections for neutron-proton scattering are reported for 12 incident neutron energies between 28 and 75 MeV. Data are compared with predictions of different theoretical models and with other experimental results.
No description provided.
No description provided.
No description provided.
Bhabha scattering at a center-of-mass energy of 57.77 GeV has been measured using the VENUS detector at KEK TRISTAN. The precision is better than 1% in scattering angle regions of |cosθ|⩽0.743 and 0.822⩽cosθ⩽0.968. A model-independent scattering-angle distribution is extracted from the measurement. The distribution is in good agreement with the prediction of the standard electroweak theory. The sensitivity to underlying theories is examined, after unfolding the photon-radiation effect. The q2 dependence of the photon vacuum polarization, frequently interpreted as a running of the QED fine-structure constant, is directly observed with a significance of three standard deviations. The Z0 exchange effect is clearly seen when the distribution is compared with the prediction from QED (photon exchanges only). The agreement with the standard theory leads us to constraints on extensions of the standard theory. In all quantitative discussions, correlations in the systematic error between angular bins are taken into account by employing an error matrix technique.
Cross section is integrated over the cos(theta ) bin.
We have studied the process e+e− → nγ (n ≥ 2) at an average center-of-mass energy of 133 GeV using the L3 detector at LEP. For an integrated luminosity of 4.95 pb−1 we find one γγγγ(γ) final state with only hard photons. The rates of both γγγ and γγ events are consistent with QED expectations. The cross section of the reaction e+e− → γγ(γ) in the polar range 16° < θγ < 164° is measured to be 22.6 ± 2.2 pb. Decays into photons of narrow scalar resonances with masses between 90 and 130 GeV are not observed. The observation of the event with four energetic photons is consistent with QED although the kinematic configuration of the photons is atypical.
Cross section for process E+ E- --> GAMMA GAMMA (GAMMA) with two hard photons.Error is purely statistical, systematic effects are neglected.
No description provided.
We have measured differential cross sections for pion elastic scattering from H3 and He3 in the angular region near the minimum in the non-spin-flip amplitude. Data were acquired for incident pion energies of 180, 220, 256, and 295 MeV. Nuclear charge symmetry is investigated with the aid of several charge-symmetric ratios formed from combinations of measured cross sections. A particularly intriguing result is obtained from the superratio R, which is defined as R=dσ(π+3H)dσ(π−3H)/dσ(π+3He)dσ(π−3He). R is found to be greater than unity at 180 MeV and significantly smaller than unity at 256 MeV, with the transition occurring at around 210 MeV. The charge-symmetry prediction for this ratio (after allowance for the Coulomb force) is one, and is independent of energy and angle. © 1996 The American Physical Society.
Axis error includes +- 3/3 contribution.
Axis error includes +- 3/3 contribution.
Axis error includes +- 3/3 contribution.
Total and differential cross sections for the process e + e − → γγ ( γ ), and the total cross section for the process e + e − → γγγ , are measured at energies around 91 GeV using the data collected with the L3 detector from 1991 to 1993. We set lower limits, at 95% CL, on a contact interaction energy scale parameter Λ > 602 GeV, on the mass of an excited electron m e ∗ >146 GeV and on the QED cut-off parameters Λ + > 149 GeV and Λ _ > 143 GeV. Upper limits are also set o branching fractions of Z decaying into γγ , π ° and ηγ of 5.2 × 10 −5 , 5.2 × 10 −5 and 7.6 × 10 −5 respectively. The reactions e + e − → ℓ + ℓ − nγ (ℓ = e , μ , τ ) are studied using the data collected from 1990 to 1994. The data are consistent with the QED expectations.
No description provided.
No description provided.
No description provided.