Using the 18.8 pb −1 of data accumulated at LEP in 1990 and 1991 with the ALEPH detector, a direct test of neutral current CP -invariance is performed by a search for CP -odd correlations in Z decays to τ pairs where both τ decay modes are identified. No evidence for CP -violation is observed. The weak dipole moment of the τ has been measured to be d τ ( m Z ) = (1.3 ± 1.4 ± 0.1) × 10 −17 e ·cm which results in an upper limit on the weak dipole moment of | d τ ( m Z )| ⩽ 3.7 × 10 −17 e ·cm with 95% confidence level.
No description provided.
We have measured the cross-section of the production of single photon events in e + e − collisions near the Z 0 resonance. For an integrated luminosity of 9.6 pb −1 , we have observed 202 single photon candidates with energy between 0.9 and 3.5 GeV in the polar angular region between 45° and 135°. Assuming that the only stable weakly interacting particles are light neutrinos with standard model couplings, we determine the number of light neutrino species to be N v = 3.14 ± 0.24 (stat.)±0.12 (syst.). This corresponds to an invisible Z 0 width of Γ inv = 524 ± 40 ± 20 MeV.
Corrected cross section.
Inclusive J/ψ and ψ(2S) production has been studied in p¯p collisions at √s =1.8 TeV using 2.6±0.2 pb−1 of data taken with the Collider Detector at Fermilab. The products of production cross section times branching fraction were measured as functions of PT for J/ψ→μ+μ− and ψ(2S)→μ+μ−. In the kinematic range PT>6 GeV/c and ‖η‖≤0.5 we get σ(p¯p→J/ψ X)B(J/ψ→μ+μ−) =6.88±0.23(stat)−1.08+0.93(syst) nb, and σ(p¯p→ψ(2S)X)B(ψ(2S)→μ+μ−) =0.232±0.051(stat)−0.032+0.029(syst)nb. From these values we calculate the inclusive b-quark production cross section.
Cross section times the branching ratio into mu+ mu- pairs.
Cross section times the branching ratio into mu+ mu- pairs.
.
We have measured the forward-backward asymmetry in e + e − → b b and e + e − → c c processes using hadronic events containing muons or electrons. The data sample corresponds to 4100000 hadronic decays of the Z 0 . From a fit to the single lepton and dilepton p and p T spectra, we determine A b b =0.086±0.015±0.007 and A c c =0.083±0.038±0.027 at the effective center-of-mass energy √ s =91.24 GeV. These measurements yield a value of the electroweak mixing angle sin 2 θ w =0.2336±0.0029 .
No description provided.
No description provided.
No description provided.
The dijet angular distribution is measured in the Collider Detector at Fermilab. This measurement covers higher mass ranges and larger scattering angles than previously possible. Good agreement is observed between the data and both leading-order [O(αs2)] and next-to-leading order [O(αs3)] QCD calculations. A limit on quark compositeness of Λc>1.0 TeV is obtained.
No description provided.
No description provided.
No description provided.
We present a measurement of jet shapes in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab (CDF). Qualitative agreement is seen with the predictions of recent next-to-leading [O(αs3)] calculations and with leading logarithm QCD based Monte Carlo simulations. The dependence of the jet shape on transverse energy is studied.
No description provided.
We have measured the total and differential cross sections of the reaction e + e − → γγ ( γ ) at center-of-mass energies around 91 GeV, with an integrated luminosity of 14.2 pb −1 . The results are in good agreement with QED predictions. We set lower limits, at 95% confidence level, on the QED cutoff parameters of Λ + > 139 GeV, Λ − > 108 GeV and on the mass of an excited electron of m e∗ > 127 GeV . We searched for Z 0 rare decays with photonic signitures in the final state. Upper limits, at 95% confidence level, for branching ratio of Z 0 decaying into π 0 γ / γγ , νγ and γγγ are 1.2 × 10 −4 , 1.8 × 10 −4 , 3.3 × 10 −5 respectively.
Measured cross section for the 1991 data.
Measured cross section for the 1990 data.
Measured differential cross sections of combined 1990 and 1991 data.
We present a study of the inclusive η production based on 300 000 hadronic Z 0 decays. The measured inclusive momentum distribution can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results with low energy e + e − data, we find that QCD describes both the shape and the energy evolution of the η spectrum. The comparison of η production rates in quark- and gluon-enriched jet samples does not show statistically significant evidence for more abundant production of η mesons in gluon fragmentation.
Differential cross section for inclusive eta production, normalized to the total hadronic cross section.
Differential cross section for inclusive eta production, normalized to the total hadronic cross section.
The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.
No description provided.
Additional 7 pct systematic error.
Additional 23 pct systematic error.
The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.
Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.01.
Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.02.
Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.04.