Search for exotic decays of the Higgs boson into $b\bar{b}$ and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
CERN-EP-2021-098, 2021.
Inspire Record 1917172 DOI 10.17182/hepdata.104855

A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.

20 data tables

Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).

More…

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
2021.
Inspire Record 1915357 DOI 10.17182/hepdata.107760

This paper presents the measurement of the electroweak production of two jets in association with a $Z\gamma$ pair with the $Z$ boson decaying into two neutrinos. It also presents the search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. For electroweak production of $Z\gamma$ in association with two jets, the background-only hypothesis is rejected with an observed (expected) significance of 5.2 (5.1) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. Observed (expected) upper limit of 0.37 (0.34) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson to a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 (0.017), assuming the 125 GeV Standard Model Higgs boson production cross-section.

16 data tables

Post-fit results for all $m_\text{jj}$ SR and CR bins in the EW $Z \gamma + \text{jets}$ cross-section measurement with the $\mu_{Z \gamma_\text{EW}}$ signal normalization floating. The post-fit uncertainties include statistical, experimental, and theory contributions.

Post-fit results for all DNN SR and CR bins in the search for $H \to \text{inv.}$ with the $\mathcal{B}_\text{inv}$ signal normalization set to zero. For the $Z_\text{Rev.Cen.}^\gamma$ CR, the third bin contains all events with DNN output score values of 0.6-1.0. The $H \to \text{inv.}$ signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. The post-fit uncertainties include statistical, experimental, and theoretical contributions.

Post-fit results for the ten [$m_\text{jj}$, $m_\text{T}$] bins constituting the SR and CRs defined for the dark photon search with the $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ signal is shown for two different mass hypotheses (125 GeV, 500 GeV) and scaled to a branching ratio of 2% and 1%, respectively. The post-fit uncertainties include statistical, experimental, and theoretical contributions.

More…

Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
CERN-EP-2021-153, 2021.
Inspire Record 1914582 DOI 10.17182/hepdata.111123

Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.

6 data tables

Summary of charm muon double differential cross section in pp collisions at 5.02 TeV as a function of pT. Uncertainties are statistical and systematic, respectively.

Summary of charm muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.

Summary of bottom muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.

More…

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
CERN-EP-2021-127, 2021.
Inspire Record 1906174 DOI 10.17182/hepdata.104458

A search for charginos and neutralinos at the Large Hadron Collider is reported using fully hadronic final states and missing transverse momentum. Pair-produced charginos or neutralinos are explored, each decaying into a high-$p_{\text{T}}$ Standard Model weak boson. Fully-hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient background rejection by identifying the high-$p_{\text{T}}$ bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. The 95% confidence level exclusion limits are set on wino or higgsino production with varying assumptions in the decay branching ratios and the type of the lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest SUSY particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass wino and higgsino is significantly extended compared with the previous LHC searches using the other final states.

145 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Cutflow:</b> <a href="104458?version=1&table=Cut flows for the representative signals">table</a><br/><br/> <b>Boson tagging:</b> <ul> <li><a href="104458?version=1&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20efficiency">$W/Z\rightarrow qq$ tagging efficiency</a> <li><a href="104458?version=1&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20rejection">$W/Z\rightarrow qq$ tagging rejection</a> <li><a href="104458?version=1&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20efficiency">$Z/h\rightarrow bb$ tagging efficiency</a> <li><a href="104458?version=1&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20rejection">$Z/h\rightarrow bb$ tagging rejection</a> <li><a href="104458?version=1&table=%24W%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$W\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=1&table=%24W%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$W\rightarrow qq$ tagging rejection (vs official WP)</a> <li><a href="104458?version=1&table=%24Z%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=1&table=%24Z%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging rejection (vs official WP)</a> </ul> <b>Systematic uncertainty:</b> <a href="104458?version=1&table=Total%20systematic%20uncertainties">table</a><br/><br/> <b>Summary of SR yields:</b> <a href="104458?version=1&table=Data%20yields%20and%20background%20expectation%20in%20the%20SRs">table</a><br/><br/> <b>Expected background yields and the breakdown:</b> <ul> <li><a href="104458?version=1&table=Data%20yields%20and%20background%20breakdown%20in%20SR">CR0L / SR</a> <li><a href="104458?version=1&table=Data%20yields%20and%20background%20breakdown%20in%20CR%2FVR%201L(1Y)">CR1L / VR1L /CR1Y / VR1Y</a> </ul> <b>SR distributions:</b> <ul> <li><a href="104458?version=1&table=Effective mass distribution in SR-4Q-VV">SR-4Q-VV: Effective mass</a> <li><a href="104458?version=1&table=Leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Leading jet mass</a> <li><a href="104458?version=1&table=Leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Leading jet $D_{2}$</a> <li><a href="104458?version=1&table=Sub-leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet mass</a> <li><a href="104458?version=1&table=Sub-leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet $D_{2}$</a> <li><a href="104458?version=1&table=$m_{T2}$ distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: $m_{\textrm{T2}}$</a> <li><a href="104458?version=1&table=bb-tagged jet mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: bb-tagged jet mass</a> <li><a href="104458?version=1&table=Effective mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: Effective mass</a> <li><a href="104458?version=1&table=$m_{T2}$ distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: $m_{\textrm{T2}}$</a> <li><a href="104458?version=1&table=bb-tagged jet mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: bb-tagged jet mass</a> <li><a href="104458?version=1&table=Effective mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: Effective mass</a> </ul> <b>Exclusion limit:</b> <ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) simplified model (C1C1-WW)">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=1&table=Obs limit on (W~, B~) simplified model (C1C1-WW)">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) simplified model (C1N2-WZ)">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) simplified model (C1N2-WZ)">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) simplified model (C1N2-Wh)">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) simplified model (C1N2-Wh)">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=0\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) B(N2->ZN1) = 0%">Expected limit</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) B(N2->ZN1) = 0%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=25\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) B(N2->ZN1) = 25%">Expected limit</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) B(N2->ZN1) = 25%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=75\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) B(N2->ZN1) = 75%">Expected limit</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) B(N2->ZN1) = 75%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=100\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, B~) B(N2->ZN1) = 100%">Expected limit</a> <li><a href="104458?version=1&table=Obs limit on (W~, B~) B(N2->ZN1) = 100%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (H~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=1&table=Obs limit on (H~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=1&table=Exp limit on (W~, H~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (W~, H~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=1&table=Exp limit on (H~, W~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=1&table=Obs limit on (H~, W~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=1&table=Exp limit on (W~, H~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (W~, H~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=1&table=Exp limit on (H~, W~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=1&table=Obs limit on (H~, W~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{G})$ model: <ul> <li><a href="104458?version=1&table=Exp limit on (H~, G~)">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (H~, G~)">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=100\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (H~, a~) B(N1->Za~) = 100%">Expected limit</a> <li><a href="104458?version=1&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=1&table=Obs limit on (H~, a~) B(N1->Za~) = 100%">Observed limit</a> <li><a href="104458?version=1&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=1&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=75\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (H~, a~) B(N1->Za~) = 75%">Expected limit</a> <li><a href="104458?version=1&table=Obs limit on (H~, a~) B(N1->Za~) = 75%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=50\%$): <ul> <li><a href="104458?version=1&table=Exp limit on (H~, a~) B(N1->Za~) = 50%">Expected limit</a> <li><a href="104458?version=1&table=Obs limit on (H~, a~) B(N1->Za~) = 50%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=25\%$): <ul> <li>Expected limit : (No mass point could be excluded) <li><a href="104458?version=1&table=Obs limit on (H~, a~) B(N1->Za~) = 25%">Observed limit</a> </ul> </ul> <b>EWKino branching ratios:</b> <ul> <li>$(\tilde{W},~\tilde{H})$ model: <ul> <li><a href="104458?version=1&table=B(C2-%3EW%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=1&table=B(C2-%3EZ%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(C2-%3Eh%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(N3-%3EW%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(N3-%3EZ%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=1&table=B(N3-%3Eh%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1,2}^{0})$</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model: <ul> <li><a href="104458?version=1&table=B(C2-%3EW%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=1&table=B(C2-%3EZ%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(C2-%3Eh%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(N2-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(N2-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=1&table=B(N2-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=1&table=B(N3-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=1&table=B(N3-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=1&table=B(N3-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> </ul> </ul> <b>Cross-section upper limit:</b> <ul> <li>Expected: <ul> <li><a href="104458?version=1&table=Expected cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=1&table=Expected cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=1&table=Expected cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=1&table=Expected cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> <li>Observed: <ul> <li><a href="104458?version=1&table=Observed cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=1&table=Observed cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=1&table=Observed cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=1&table=Observed cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> </ul> <b>Acceptance:</b> <ul> <li><a href="104458?version=1&table=Acceptance of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=1&table=Acceptance of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=1&table=Acceptance of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=1&table=Acceptance of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-Vh</a> <li><a href="104458?version=1&table=Acceptance of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=1&table=Acceptance of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=1&table=Acceptance of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=1&table=Acceptance of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=1&table=Acceptance of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=1&table=Acceptance of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=1&table=Acceptance of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul> <b>Efficiency:</b> <ul> <li><a href="104458?version=1&table=Efficiency of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=1&table=Efficiency of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=1&table=Efficiency of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=1&table=Efficiency of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh) in SR-2B2Q-Vh</a> <li><a href="104458?version=1&table=Efficiency of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=1&table=Efficiency of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=1&table=Efficiency of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=1&table=Efficiency of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=1&table=Efficiency of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=1&table=Efficiency of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=1&table=Efficiency of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul>

Cut flows of some representative signals up to SR-4Q-VV, SR-2B2Q-VZ, and SR-2B2Q-Vh. One signal point from the $(\tilde{W},~\tilde{B})$ simplified models (C1C1-WW, C1N2-WZ, and C1N2-Wh) and $(\tilde{H},~\tilde{G})$ is chosen. The "preliminary event reduction" is a technical selection applied for reducing the sample size, which is fully efficient after the $n_{\textrm{Large}-R~\textrm{jets}}\geq 2$ selection.

The boson-tagging efficiency for jets arising from $W/Z$ bosons decaying into $q\bar{q}$ (signal jets) are shown. The signal jet efficiency of $W_{qq}$/$Z_{qq}$-tagging is evaluated using a sample of pre-selected large-$R$ jets ($p_{\textrm{T}}>200~\textrm{GeV}, |\eta|<2.0, m_{J} > 40~\textrm{GeV}$) in the simulated $(\tilde{W},\tilde{B})$ simplified model signal events with $\Delta m (\tilde{\chi}_{\textrm{heavy}},~\tilde{\chi}_{\textrm{light}}) \ge 400~\textrm{GeV}$. The jets are matched with generator-level $W/Z$-bosons by $\Delta R<1.0$ which decay into $q\bar{q}$. The efficiency correction factors are applied on the signal efficiency rejection for the $W_{qq}$/$Z_{qq}$-tagging. The systematic uncertainty is represented by the hashed bands.

More…

Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-TOP-21-001, 2021.
Inspire Record 1895530 DOI 10.17182/hepdata.105880

A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations.

4 data tables

Expected and observed 95% CL confidence intervals for all Wilson coefficients. The intervals are obtained by scanning over a single Wilson coefficient, while fixing the other Wilson coefficients to their SM values of zero.

Expected and observed 95% CL confidence intervals for all Wilson coefficients. The intervals for all five Wilson coefficients are obtained from a single fit, in which all Wilson coefficients are treated as free parameters.

Covariance between the Wilson coefficients (in units of TeV$^{-4}$), after the 5D fit to data.

More…

Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-EXO-20-004, 2021.
Inspire Record 1894408 DOI 10.17182/hepdata.106115

A search is presented for new particles produced at the LHC in proton-proton collisions at $\sqrt{s}=$ 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb$^{-1}$, collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb$^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.

55 data tables

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIG-20-015, 2021.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

7 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each jet multiplicity bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each leading jet pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the production cross section of pairs of isolated photons in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
CERN-EP-2021-105, 2021.
Inspire Record 1887997 DOI 10.17182/hepdata.104925

A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

9 data tables

Differential cross section as a function of $p_{T,\gamma_{1}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Differential cross section as a function of $p_{T,\gamma_{2}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Integrated fiducial cross section measured in data and from different predictions.

More…

Search for exotic decays of the Higgs boson into long-lived particles in $pp$ collisions at $\sqrt{s} = 13$ TeV using displaced vertices in the ATLAS inner detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
2021.
Inspire Record 1882568 DOI 10.17182/hepdata.106655

A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.

7 data tables

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.

More…

Version 2
Search for long-lived particles decaying in the CMS endcap muon detectors in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-EXO-20-015, 2021.
Inspire Record 1883075 DOI 10.17182/hepdata.104408

A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the endcap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and $\tau^+\tau^-$ are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.

15 data tables

The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 7 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.

The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 15 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.

The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 40 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.

More…