Date

The Energy Dependence of Backward $\pi^+ p$ Elastic Scattering from 2 GeV/c to 6 GeV/c

Baker, W.F. ; Eartly, David P. ; Pretzl, K. ; et al.
Phys.Rev.Lett. 32 (1974) 251, 1974.
Inspire Record 80709 DOI 10.17182/hepdata.21310

The energy dependence of backward π+p elastic scattering has been measured for incident π momenta 2.0-6.0 GeV/c in steps of typically 100 MeV/c. Values are presented for both the differential cross section extrapolated to 180° and the slope of the backward peak as a function of momentum. In the s channel we see the effects of the established Δ++ resonances and evidence for the Δ(3230). Also, the data show the existence of a negative-parity Δ resonance with mass ∼2200 MeV/c2.

1 data table

No description provided.


K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…

K0(L) p ---> p K0(S) BACKWARD SCATTERING FROM 1.0-GeV/c TO 7.5-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.Lett. 30 (1973) 145, 1973.
Inspire Record 73583 DOI 10.17182/hepdata.21406

Backward scattering in the reaction KL0p→pKS0 is studied in the momentum interval 1.0 to 7.5 GeV/c. Comparison of KL0p→pKS0 and K+p→pK+ backward scattering, where respectively Σ exchange and Λ plus Σ exchange can contribute in the u channel, reveals that dσdΩ180°(KL0p→pKS0dσdΩ180°(K+p→pK+) above the resonance region. This result provides direct evidence for the dominance of the Λ contribution over the Σ contribution in the K+p→pK+ production amplitude.

1 data table

No description provided.


Elastic forward and backward scattering of pi- and k-mesons at 5.2 and 7.0 gev/c

Baker, W.F. ; Berkelman, Karl ; Carlson, P.J. ; et al.
Nucl.Phys.B 25 (1971) 385-410, 1971.
Inspire Record 68816 DOI 10.17182/hepdata.33834

We present results of measurements of the differential cross sections for the following elastic-scattering reactions: (i) π + p at 5.2 and 7.0 GeV/ c in the range −1 < u < 0.02 (GeV/ c ) 2 , (ii) π − p at 7.0 GeV/ c in the range −0.7 < u < 0.05 (GeV/ c ) 2 , (iii) K + p at 5.2 and 7.0 GeV/ c in the ranges −1 < t < −0.01 (GeV/ c ) 2 and −1 < u < 0 (GeV/ c ) 2 , and K − p at 7.0 GeV/ c in the range −1 < u < 0 (GeV/ c ) 2 .

9 data tables

No description provided.

No description provided.

SIDE GEOMETRY.

More…

Kp and pi-p backward elastic scattering at 5.2 and 6.9 gev/c

Baker, W.F. ; Berkelman, Karl ; Carlson, P.J. ; et al.
Phys.Lett.B 28 (1968) 291-295, 1968.
Inspire Record 56828 DOI 10.17182/hepdata.29075

The angular distributions of K + p and π + p backward elastic scattering have been measured at 5.2 and 6.9 GeV/ c . Backward π - p and K - p elastic scattering were studied at 6.9 GeV/ c . Backward peaks are observed in K + p scattering with an energy dependence of the form s −4 .

1 data table

No description provided.