We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.
Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.
Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.
Results of the analyzing power for n p scattering at 0.800 GeV.
The single diffraction dissociation process pp → (p π + π − )p has been studied at the CERN ISR at √ s = 45 GeV and 0.1 < − t < 0.6 GeV 2 . The reaction is dominated by nucleon resonance production: pp → pN (1520) and pp → pN(1688) with cross-sections (0.25 ± 0.08) mb and (0.56 ± 0.19) mb respectively.
DIFFERENTIAL CROSS SECTIONS FOR THREE RANGES OF <P PI+ PI-> MASS.
A study of the reaction π + p → p π + π o at 16 GeV/ c incident momentum has been made using the prism plot analysis to reject background events arising from elastic and multineutral contaminations and to separate different reaction channels ( ϱ + p, g + p, Δ + π + , Δ ++ π o , π + (p π o ) DD ). Cross sections, invariant mass distributions and production and decay angular distributions are presented. For the channel corresponding to proton diffraction dissociation strong violation of both s - and t -channel helicity conservation is found for low values of the (p π o ) mass. We demonstrate that the prism plot method provides a better separation of background events than conventional methods using kinematic cuts.
STATISTICAL ERRORS ONLY.
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
The spin analyzing power A in 28-GeV/c proton-proton elastic scattering was measured at P⊥2=6.5 (GeV/c)2 using a polarized proton target and a high-intensity unpolarized proton beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The result of (24±8)% confirms that the analyzing power is large and rising in the large-P⊥2 region.
No description provided.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
New results are presented from the continuation of an experiment designed to study the polarization in elastic p−p scattering at large four-momentum transfers. A high-intensity unpolarized proton beam of momentum 12.3 GeV/c was incident on a propanediol polarized proton target and both final-state protons were detected and momentum-analyzed in multiwire proportional chamber spectrometers. The measurements spanned the t range 1.5<|t|<6.2 (GeV/c)2. The results are discussed in the framework of optical, exchange, and parton models.
INCLUDING DATA FROM AN EARLIER RUN (ABSHIRE PRL 32, 1261 (1974)) FOUND TO BE IN STATISTICAL AGREEMENT.
Angular distributions of the analyzing powers for π+p→ and π−p→ elastic scattering have been measured in a single-scattering experiment employing a polarized proton target. Measurements were obtained for pion energies of 98, 139, 166, 215, and 263 MeV. The addition of these data to the existing πp database significantly reduces the uncertainties in all S and P phase shifts for πp reactions over the delta resonance.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 98 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 139 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 166 MeV.
Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.
Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.
Analyzing power for PI+ P elastic scattering at incidient kinetic energy 87.2 MeV from the data set 1.
Analyzing power for PI+ P elastic scattering at incidient kinetic energy 68.4 MeV from the data set 1.
Analyzing power for PI+ P elastic scattering at incidient kinetic energy 57.2 MeV from the data set 1.