Date

Photoproduction of K$^{+}$K$^{-}$ pairs in ultra-peripheral collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 132 (2024) 222303, 2024.
Inspire Record 2724212 DOI 10.17182/hepdata.151670

K$^{+}$K$^{-}$ pairs may be produced in photonuclear collisions, either from the decays of photoproduced $\phi (1020)$ mesons, or directly as non-resonant K$^{+}$K$^{-}$ pairs. Measurements of K$^{+}$K$^{-}$ photoproduction probe the couplings between the $\phi (1020)$ and charged kaons with photons and nuclear targets. The kaon$-$proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K$^{+}$K$^{-}$ pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K$^{+}$K$^{-}$ production. There is significant K$^{+}$K$^{-}$ production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range $1.1 < M_{\rm{KK}} < 1.4$ GeV/$c^2$ above the $\phi (1020)$ resonance, for rapidity $|y_{\rm{KK}}|<0.8$ and $p_{\rm T,KK} < 0.1$ GeV/$c$, the measured coherent photoproduction cross section is $\mathrm{d}\sigma/\mathrm{d}y$ = 3.37 $\pm\ 0.61$ (stat.) $\pm\ 0.15 $ (syst.) mb. The center-of-mass energy per nucleon of the photon-nucleus (Pb) system $W_{\gamma \mathrm{Pb, n}}$ ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for $\phi (1020)$ photoproduction alone. The mass spectrum is fit to a cocktail consisting of $\phi (1020)$ decays, direct K$^{+}$K$^{-}$ photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K$^{+}$K$^{-}$ photoproduction are presented.

2 data tables

d$^2\sigma$/d$y$/d$p_T^2$ in bins of $p_{T,KK}^2$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .

d$^2\sigma$/d$y$/d$p_T^2$ in bins of $M_{KK}$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .


Measurement of (anti)alpha production in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 858 (2024) 138943, 2024.
Inspire Record 2724193 DOI 10.17182/hepdata.153848

In this letter, measurements of (anti)alpha production in central (0$-$10%) Pb$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented, including the first measurement of an antialpha transverse-momentum spectrum. Owing to its large mass, (anti)alpha production yields and transverse-momentum spectra are of particular interest because they provide a stringent test of particle production models. The averaged antialpha and alpha spectrum is included into a common blast-wave fit with lighter particles, indicating that the (anti)alpha also participates in the collective expansion of the medium created in the collision. A blast-wave fit including only protons, (anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light nuclei are included in the fit. The coalescence parameter $B_4$ is well described by calculations from a statistical hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha substructure tend to underestimate the data.

8 data tables

Antialpha spectrum in 0-10% V0M centrality class

Alpha spectrum in 0-10% V0M centrality class

Average alpha and antialpha spectrum in 0-10% V0M centrality class

More…

Light-flavor particle production in high-multiplicity pp collisions at $\mathbf{\sqrt{\textit{s}} = 13}$ TeV as a function of transverse spherocity

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 05 (2024) 184, 2024.
Inspire Record 2711421 DOI 10.17182/hepdata.153642

Results on the transverse spherocity dependence of light-flavor particle production ($\pi$, K, p, $\phi$, ${\rm K^{*0}}$, ${\rm K}^{0}_{\rm{S}}$, $\Lambda$, $\Xi$) at midrapidity in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV were obtained with the ALICE apparatus. The transverse spherocity estimator ($S_{{\rm O}}^{{\it p}_{\rm T}=1}$) categorizes events by their azimuthal topology. Utilizing narrow selections on $S_{\text{O}}^{{\it p}_{\rm T}=1}$, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The $S_{{\rm O}}^{{\it p}_{\rm T}=1}$ estimator is found to effectively constrain the hardness of the events when the midrapidity ($\left | \eta \right |< 0.8$) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of $S_{{\rm O}}^{{\it p}_{\rm T}=1}$.

45 data tables

Spherocity distributions with respect to different multiplicity selections.

<pT> vs <dN_{#pi}/dEta> for different multiplicity and spherocity classes.

pT differential Phi spectra as a function of spherocity within 0-1% nTracklets.

More…

Charged-particle production as a function of the relative transverse activity classifier in pp, p$-$Pb, and Pb$-$Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 199, 2024.
Inspire Record 2709103 DOI 10.17182/hepdata.146104

Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8<p_{\mathrm{T}}^{\rm trig}<15$ GeV$/c$. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, $R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$, is used to group events according to their UE activity, where $N_{\mathrm{ch}}^{\mathrm{T}}$ is the charged-particle multiplicity per event in the transverse region and $\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$ is the mean value over the whole analysed sample. The energy dependence of the $R_{\mathrm{T}}$ distributions in pp collisions at $\sqrt{s}=2.76$, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle $p_{\rm T}$ spectra as a function of $R_{\mathrm{T}}$ in the three azimuthal regions in pp, p$-$Pb, and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p$-$Pb).

28 data tables

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=2.76~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=7~\mathrm{TeV}$

More…

Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 024915, 2024.
Inspire Record 2709104 DOI 10.17182/hepdata.146805

Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the CERN Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE Collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.

74 data tables
More…

Measurements of long-range two-particle correlation over a wide pseudorapidity range in p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.0$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 199, 2024.
Inspire Record 2693248 DOI 10.17182/hepdata.151801

Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the "ridge" phenomenon, were discovered in heavy-ion collisions, and later found in pp and p$-$Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small-collision systems. In this Letter, measurements of the long-range correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV are extended to a pseudorapidity gap of $\Delta\eta \sim 8$ between particles using the ALICE, forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of $\Delta\eta \sim 8$ for the first time in p$-$Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small-collision systems such as p$-$Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, $v_{2}({\eta})$, is extracted from the long-range correlations. The $v_{2}(\eta)$ results are presented for a wide pseudorapidity range of $-3.1 < \eta < 4.8$ in various centrality classes in p$-$Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small-collision systems, the $v_{2}(\eta)$ measurements are compared to hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small-collision systems.

6 data tables

$v_{2}\{2\}$ at $p_{\rm T} > 0$ GeV/$c$ as a function of pseudorapidity in different centrality classes using the template fit method

$v_{2}$ at $p_{\rm T} > 0$ GeV/$c$ as a function of charged particle density for five different pseudorapidity regions with the peripheral subtraction at $-3.1<\eta<-2.5$

$v_{2}$ at $p_{\rm T} > 0$ GeV/$c$ as a function of charged particle density for five different pseudorapidity regions with the peripheral subtraction at $-0.8<\eta<0$

More…

Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at $\sqrt{s}$ = 13 TeV and in p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 03 (2024) 092, 2024.
Inspire Record 2692432 DOI 10.17182/hepdata.151802

Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV and p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The correlation functions are measured as a function of relative azimuthal angle $\Delta\varphi$ and pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum interval $1 < p_{\rm T} < 4$ GeV/$c$. Flow coefficients are extracted for the long-range correlations ($1.6 < |\Delta\eta| <1.8$) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.

10 data tables

High and low multiplicity long-range delta phi correlations

Jet fragmentation yields of near and away side as a function of multiplicity class and and the ratio of them, please see the definition of x-axis

The second and third harmonic coefficients as a function of transverse momentum in pp and p--Pb collisions.

More…

System size dependence of hadronic rescattering effect at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-175, 2023.
Inspire Record 2691823 DOI 10.17182/hepdata.146076

The first measurements of $\mathrm{K^{*}(892)^{0}}$ resonance production as a function of charged-particle multiplicity in Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV and pp collisions at $\sqrt{s}=$ 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity ($|y|< 0.5$) using the hadronic decay channel $\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}$. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of $\mathrm{K^{*0}}$, and yield ratios of resonance to stable hadron ($\mathrm{K^{*0}}$/K) are compared across different collision systems (pp, p$-$Pb, Xe$-$Xe, and Pb$-$Pb) at similar collision energies to investigate how the production of $\mathrm{K^{*0}}$ resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of $\mathrm{K^{*0}}$ in Xe$-$Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model.

27 data tables

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 0-1\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 1-5\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 5-10\% multiplicity class.

More…

Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 12 (2023) 067, 2023.
Inspire Record 2692198 DOI 10.17182/hepdata.145839

The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope $r_{3}^{\rm Norm}$ is found to be larger than zero and to have a magnitude similar to $r_{2}^{\rm Norm}$, thus pointing to a large background contribution for these measurements. Furthermore, $r_{2}^{\rm Norm}$ can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW ($f_{\rm CMW}$) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for $f_{\rm CMW}$, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.

15 data tables

Normalized $\Delta\it{v}_{2}$ slope of charged hadrons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Normalized $\Delta\it{v}_{2}$ slope of kaons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Normalized $\Delta\it{v}_{2}$ slope of pions as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…

Search for jet quenching effects in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV via di-jet acoplanarity

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 05 (2024) 229, 2024.
Inspire Record 2694579 DOI 10.17182/hepdata.151783

The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton$-$proton collisions at $\sqrt{s}$ = 13 TeV, using the semi-inclusive azimuthal-difference distribution $\Delta\varphi$ of charged-particle jets recoiling from a high transverse momentum (high-$p_{\mathrm{T,trig}}$) trigger hadron. Jet quenching may broaden the $\Delta\varphi$ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a $p_{\mathrm{T,trig}}$-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity.

8 data tables

Probability distribution of $\mathrm{V0M}/\langle \mathrm{V0M} \rangle$ in MB pp collisions measured at $\sqrt{s}=13$ TeV.

Fully-corrected $\Delta_{\mathrm{recoil}} (p_{\mathrm{T, jet}}^{\mathrm{ch}})$ distributions measured in MB and HM-selected events in pp collisions at $\sqrt{s}= 13$ TeV.

Fully-corrected $\Delta_{\mathrm{recoil}} (\Delta\phi)$ distributions for $p_{\mathrm{T, jet}}^{\mathrm{ch}} \in (20, 40)$ GeV/$c$ measured in MB and HM-selected events in pp collisions at $\sqrt{s}= 13$ TeV.

More…