Date

Neutral Pion Production in $K^+ p$ Interactions at 32-{GeV}

The French-Soviet & CERN-Soviet collaborations Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Nucl.Phys.B 162 (1980) 61-78, 1980.
Inspire Record 131232 DOI 10.17182/hepdata.8076

Inclusive and semi-inclusive distributions of γ's and π 0 's in the reactions K + p → γ + X and K + p → π 0 + X at 32 GeV/ c are presented and discussed. When compared to the inclusive π − production, the π 0 cross section is found to be significantly higher in low | x | and p T regions. The data are compared with other experiments and quark fusion model predictions.

2 data tables match query

No description provided.

ESTIMATED FROM GAMMA AND 2GAMMA SPECTRA.


Inclusive Strange Particle Production in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Nucl.Phys.B 165 (1980) 1-18, 1980.
Inspire Record 141734 DOI 10.17182/hepdata.8000

The production of K s 0 , Λ and Λ is measured in π + p interactions at 32 GeV/ c . The total inclusive cross sections are found to be 2.07±0.14, 1.00±0.10 and 0.14±0.04 mb, respectively. The energy dependence of total inclusive cross sections and inclusive distributions is discussed and a comparison is made with p, p , K + and K − induced reactions. We find that the factorization hypothesis is satisfied for the inclusive reactions π + p→ Λ X and K + p→ Λ X. Multi-strange-particle production is similar in π + p and K + p interactions at 32 GeV/ c . There is evidence for beam fragmentation in Λ production. The hierarchy of Λ inclusive cross sections in p , K + , π + and K − induced reactions at 32 GeV/ c is qualitatively explained by a quark recombination model. The cross sections for inclusive K ∗ + (892) and Σ + (1385) production in 32 GeV/ c π + p interactions are 1.07±0.57 mb and 0.19±0.08 mb, respectively.

12 data tables match query

No description provided.

No description provided.

No description provided.

More…


Inclusive $K^*$+ (890), $K^*$+ (1430) and $\bar{K}^*$ (890) Production in $K^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Z.Phys.C 25 (1984) 103, 1984.
Inspire Record 195755 DOI 10.17182/hepdata.47703

We present final results on inclusive production ofK*+(890),K*+(1430) andK*−(890) in\(\bar K^ +p\) interactions at 32 GeV/c, based on a statistics of ∼27 events/μb. Total cross sections,pT-andx-dependence of inclusive distributions are compared with experiments at other energies and with the Lund fragmentation model. Spin density matrix elements of theK*+(890) are also discussed. The results suggest that “recombination” of both initial state valence quarks\(\bar s\) andu of theK+ intoK*+(890), responsible in the Lund model for ∼45% of theK*+(890) cross section, is strongly suppressed.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

PARTICLE AND RESONANCE PRODUCTION IN SIX BODY REACTION K+ p ---> K+ p K+ K- pi+ pi- AT 32-GeV/c

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Sov.J.Nucl.Phys. 35 (1982) 546, 1982.
Inspire Record 169080 DOI 10.17182/hepdata.41343

None

2 data tables match query

No description provided.

No description provided.


s CHANNEL AND t CHANNEL HELICITY CONSERVATION IN DIFFRACTIVE EVENTS OF THE REACTION K+ p ---> K+ pi+ pi- p AT 32-GeV/c

The CERN-Soviet collaboration Azhinenko, I.V. ; Barth, M. ; Belokopytov, Yu.A. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 673, 1980.
Inspire Record 146409 DOI 10.17182/hepdata.41499

None

25 data tables match query

DD IVENTS SELECTED BY THE RAPIDITY GAP METHOD.

More…

EXCLUSIVE REACTIONS IN pi+ p INTERACTIONS AT 32-GeV/c

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Sov.J.Nucl.Phys. 34 (1981) 821, 1981.
Inspire Record 165497 DOI 10.17182/hepdata.41255

None

2 data tables match query

No description provided.

No description provided.


J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables match query

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

12 data tables match query

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

DETERMINATION OF CROSS-SECTIONS OF STRANGE PARTICLE PRODUCTION CHANNELS IN ANTI-P P INTERACTIONS AT 32-GeV/c. (IN RUSSIAN)

Bogolyubsky, M.Yu. ; Boos, E.G. ; Borovikov, A.A. ; et al.
Yad.Fiz. 39 (1984) 1436-1447, 1984.
Inspire Record 209441 DOI 10.17182/hepdata.17683

None

1 data table match query

No description provided.