Showing 3 of 3 results
Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.
Post-fit distribution of $ANN_{Zdom}$ in the Z-dominated SR. The post-fit result is obtained from the combined 2-POI fit described in section 9.1 of the paper.
Best-fit values of the total $WH$, $ZH$, and $VH$ cross sections times the $H\rightarrow WW^{*}$ branching ratio.
Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the $VH$ and $WH/ZH$ measurements from the combined 1- and 2-POI fits, respectively
Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the single-channel measurements
Two-dimensional likelihood scan of the measured values of $\sigma_{ZH}\times\mathcal{B}_{H\rightarrow WW^{*}}$ vs. $\sigma_{WH}\times\mathcal{B}_{H\rightarrow WW^{*}}$.
The observed values of the background normalisation factors for the combined 2-POI fit. The uncertainties correspond to the total of all statistical and systematic sources.
Measured cross sections times the $H\rightarrow WW^{*}$ branching ratio for the $p_T^V$ scheme.
Measured cross sections times the $H\rightarrow WW^{*}$ branching ratio for the STXS scheme. Note: the uncertainties of "-0" are due to the confidence interval reaching the minimum allowed value of the POI.
Correlation matrix of the POIs and normalisation factors for the 2-POI inclusive analysis
Correlation matrix of the parameters of interest, normalisation factors and nuissance parameters for the $p_T^V$ scheme
Correlation matrix of the parameters of interest, normalisation factors and nuissance parameters for the STXS scheme
Event data from Z-dominated SR
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The search considers the $Z$ boson decaying into electrons or muons and the $H$ boson into a pair of $b$-quarks or $W$ bosons. The mass range considered is 230-800 GeV for the $A$ boson and 130-700 GeV for the $H$ boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for $\sigma \times B(A\rightarrow ZH) \times B(H\rightarrow bb$ or $H\rightarrow WW)$ are set. The upper limits are in the range 0.0062-0.380 pb for the $H\rightarrow bb$ channel and in the range 0.023-8.9 pb for the $H\rightarrow WW$ channel. An interpretation of the results in the context of two-Higgs-Doublet models is also given.
The mass distribution of the bb system before any mbb window cuts for the 2 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mass distribution of the bb system before any mbb window cuts for the 3 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(670, 500) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via b-associated production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=2. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=3. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
The mass distribution of the 4q system before any m4q window cuts for gluon-gluon fusion for the llWW channel. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(600, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for a narrow width A boson produced via gluon-gluon fusion production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (400, 200) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (400, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (430, 210) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (440, 220) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (500, 230) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (510, 240) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 250) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 260) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (530, 270) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 280) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 290) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 310) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (560, 320) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 330) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 340) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 350) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 360) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (590, 370) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 380) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 390) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (610, 400) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 410) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 420) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 430) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 440) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (640, 450) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 460) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 470) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (660, 480) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 490) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 510) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 520) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (690, 530) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 540) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 550) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 560) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 570) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (720, 580) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 590) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 600) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (740, 610) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 620) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 630) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 640) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 650) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (770, 660) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 670) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 680) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (790, 690) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (800, 700) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (800, 700) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
A search for a heavy Higgs boson in the H to WW and H to ZZ decay channels is reported. The search is based upon proton-proton collision data samples corresponding to an integrated luminosity of up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV and up to 19.7 inverse femtobarns at sqrt(s) = 8 TeV, recorded by the CMS experiment at the CERN LHC. Several final states of the H to WW and H to ZZ decays are analyzed. The combined upper limit at the 95% confidence level on the product of the cross section and branching fraction exclude a Higgs boson with standard model-like couplings and decays in the range 145 < m[H] < 1000 GeV. We also interpret the results in the context of an electroweak singlet extension of the standard model.
Upper limits at 95\% CL on the cross section for a heavy Higgs boson decaying to a pair of W bosons as a function of its mass and its width relative to a SM-like Higgs boson.
Upper limits at 95\% CL on the cross section for a heavy Higgs boson decaying to a pair of Z bosons as a function of its mass and its width relative to a SM-like Higgs boson.
Upper limits at 95% CL on the cross section for a heavy Higgs boson as a function of its mass and its width relative to a SM-like Higgs boson. Both, gluon-gluon fusion and VBF production processes are combined, assuming a SM-like ratio between the two.
Upper limits at 95% CL on the gluon-gluon fusion cross section for a heavy Higgs boson as a function of its mass and its width relative to a SM-like Higgs boson.
Upper limits at 95% CL on the VBF cross section for a heavy Higgs boson as a function of its mass and its width relative to a SM-like Higgs boson.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.