None
No description provided.
None
No description provided.
The polarization of the proton from the γ+n→p+π− reaction in deuterium has been experimentally measured at 90° in the center-of-mass system for photon energies near 715 MeV by using a counter technique to observe the left to right asymmetry in the scattering of the protons from carbon. A value of -0.26±0.06 was observed, with the direction of the polarization defined by n^=(k^×q^)|k^×q^|, where k^ and q^ are, respectively, unit vectors in the directions of the photon momentum and the pion momentum. The result is interpreted as an indication that the interference between the P32 (325 MeV) and D32 (750 MeV) resonances may not be the dominant contribution to the polarization at this energy. Significant contributions from either an interference between the P32 (325 MeV) resonance and the possible new resonance suggested by the π, p scattering measurements, or an interference between the D32 (750 MeV) and F52 (1050 MeV) resonances, or a combination of these two possibilities seem to be required.
No description provided.
No description provided.
None
No description provided.
None
RELATIVE PRODUCTION OF PION PAIRS WITHOUT RADIATIVE CORRECTIONS.
We have measured the e + e − → φ reaction by the K S 0 K L 0 and 3 π decay modes of the φ. We have deduced Γ ( φ → all), Γ ( φ →e + e − ), as well as B ( φ →K S 0 K L 0 ), B ( φ →K + K − ) and B ( φ → π + π − π 0 ).
No description provided.
RESONANCE FIT TO 12 DATA POINTS AROUND PHI FOR EACH CHANNEL GIVES PHI WIDTH OF 4.2 +- 0.9 MEV AND BR(PHI --> PI+ PI0 PI-/PHI --> KL KS) OF 0.667 +- 0.157 (RATHER HIGH).
No description provided.
The elastic scattering of 600-MeV protons from light nuclei has been studied at the National Aeronautics Space Administration Space Radiation Effects Laboratory (SREL) synchrocyclotron. Differential cross sections have been obtained for the scattering of protons from hydrogen, deuterium, helium-3, and helium-4. Polarization was measured for deuterium and He4 nuclei. The p−p cross-section data are in excellent agreement with the predictions from the Livermore phase shifts. Small-angle p−D, p−He3 elastic scattering data are compared with calculations based on the multiple-scattering theories of Watson and Glauber.
No description provided.
No description provided.
No description provided.
Measurements of complete angular distributions of elastic K + p scattering at closely spaced incident momenta from 1368 to 2259 MeV/ c are presented and discussed. A PDP-8 computer controlled system of scintillation counters and core-readout wire spark chambers was used for the detection of elastic events. Diffractive behaviour is already present at the lowest measured momentum and becomes more prominent as the incident momentum increases. An expansion of the angular distributions in terms of Legendre polynomials shows no marked structure of the expansion coefficients as functions of the incident momentum. Our measurements can be adequately described by a number of existing phase shift solutions within 5% of their published values. Also Regge pole extrapolations represent our data satisfactorily.
No description provided.
No description provided.
No description provided.
Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic scattering of negative pions on protons are presented for 16 momenta between 996 MeV/ c and 1342 MeV/ c . The cross sections are compared with the predictions from published phase-shift analyses.
No description provided.