We observe a resonancelike structure in the total cross section for hadron production by e+e− colliding beams at a mass of 4414 ± 7 MeV having a total width Γ=33±10 MeV. From the area under this resonance, we deduce the partial width to electron pairs to be Γee=440±140 eV. Further structure of comparable width is present near 4.1 GeV.
No description provided.
We report results from a study of π−p→ω0n at 6.0 GeV/c based on 28 000 events from a charged and neutral spectrometer. Background under the ω0 is only 7%, a large improvement over deuterium-bubble-chamber work. Density matrix elements, projected cross sections, and effective trajectories for natural and unnatural exchanges are presented.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for π−p→η0n at 6.0 GeV/c from 6730 very clean events in which the decay η→π+π−π0 was detected. The high statistics reveals a sizable forward turnover, implying a dominance of the helicity-flip amplitude. A precisely determined A2 trajectory, linear for |t|<1.0 (GeV/c)2, is found from combining our data with those at energies up to 101 GeV.
THE RESOLUTION IN TP IS EVERYWHERE SMALLER THAN THE BIN WIDTH.
We have found events of the form e++e−→e±+μ∓+missingenergy, in which no other charged particles or photons are detected. Most of these events are detected at or above a center-of-mass energy of 4 GeV. The missing-energy and missing-momentum spectra require that at least two additional particles be produced in each event. We have no conventional explanation for these events.
X IN RE INCLUDES TWO OR MORE UNDETECTED PARTICLES.
Differential cross sections for the elastic scattering of negative kaons on protons are presented for 19 momenta between 1.732 GeV/ c and 2.466 GeV/ c . The general features of the cross sections are discussed.
No description provided.
No description provided.
No description provided.
We report here the results from an experiment to obtain differential cross sections for K−p elastic scattering in the laboratory momentum region from 1.4 to 1.9 GeV/c. These data span the region of a bump in the K−p total cross section at an energy of 2.05 GeV. Approximately 20000 elastic events were obtained at each of four momenta with an angular coverage of 0.9≥cosθc.m.≥−0.9. The data are intended to aid in phase-shift analyses of the resonances causing the bump in the total cross section and to study dip structures at constant values of the Mandelstam variables t and u.
No description provided.
LEGENDRE POLYNOMIAL COEFFICIENTS.
FROM INTEGRATING LEGENDRE POLYNOMIAL FIT TO D(SIG)/DOMEGA. QUOTED ERRORS INCLUDE NORMALIZATION AND FITTING UNCERTAINTIES.
Differential cross sections for p−p elastic scattering are presented with scattering angles in the center-of-mass system greater than 35° to 50°. The data were obtained at incident laboratory momenta 0.857, 1.091, 1.210, 1.374, 1.405, and 1.501 GeV/c. This spans the region of the onset of Δ(1236) production and where a possible spin-singlet D-wave resonance is indicated in an analysis of earlier data.
No description provided.
We have searched the mass region 3.2 to 5.9 GeV for evidence of narrow resonances in e+e−→hadrons. We find no evidence for any such resonances other than the ψ(3695) in this region with a sensitivity ranging from about 12 to 45% of the integrated cross section of the ψ(3695). The more stringent bounds apply to resonances of a few MeV width, while the looser bounds apply to resonances of up to 20 MeV width.
EXTREAMLY GOOD DATA, MUST BE ASCED FROM AUTHORS.
The total cross section for hadron production by e+e− annihilation has been measured at center-of-mass energies between 2.4 and 5.0 GeV. Aside from the very narrow resonances ψ(3105) and ψ(3695), the cross section varies between 32 and 17 nb over this region with structure in the vicinity of 4.1 GeV.
No description provided.
MEAN CHARGED MULTIPLICITY. ERRORS ARE STATISTICAL ONLY.
Differential cross sections for π+p elastic scattering in the momentum region 1.2 to 2.3 GeV/c are presented for the center-of-mass angular range 0.9>cosθ>−0.9. Typically, 50 000 events were obtained at each of 16 momenta using magnetostrictive-readout wire spark chambers to detect the particles scattered from a liquid hydrogen target. The results are compared to those of the CERN-71 phase-shift analysis. The well-known dips at t≅−0.7 (GeV/c)2 and at u′=−0.2 (GeV/c)2 are observed. In addition, structure is seen at constant u′=−1.3 (GeV/c)2. The results of a pion attenuation study in iron are also presented.
No description provided.
No description provided.
No description provided.