Date

Measurements of elastic electron - proton scattering at large momentum transfer

Sill, A.F. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 48 (1993) 29-55, 1993.
Inspire Record 341324 DOI 10.17182/hepdata.22584

Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.

2 data tables

No description provided.

Formfactor scaling assumes (Ge=Gm/mu).


Measurement of elastic electron - neutron scattering and inelastic electron - deuteron scattering cross-sections at high momentum transfer

Rock, Stephen ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 46 (1992) 24-44, 1992.
Inspire Record 322422 DOI 10.17182/hepdata.18708

We have measured inelastic electron-deuteron, electron-proton, and electron-aluminum cross sections at 10° in the kinematic region between elastic deuteron scattering and the second resonance region at six beam energies between 9.8 and 21 GeV. The elastic electron-neutron cross section was extracted from the quasielastic data at Q2=2.5,4.0,6.0,8.0, and 10.0 (GeV/c)2. The ratio of elastic cross sections σnσp falls with increasing Q2 above 6 (GeV/c)2. The inelastic data are compatible either with y scaling (scattering from a single nucleon) or with ξ scaling (scattering from quarks).

18 data tables

Elastic proton cross sections.

No description provided.

No description provided.

More…

Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

2 data tables

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.

Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).


The relative differential cross-section data in elastic scattering of negative pions on protons between 1.43-GeV/c and 2.07-GeV/c

Alekseev, I.G. ; Budkovsky, P.E. ; Kanavets, V.P. ; et al.
136-141, 1989.
Inspire Record 292460 DOI 10.17182/hepdata.40058

None

1 data table

NAME=THEORY DENOTES THE MONTE-CARLO GENERATED CROSS SECTIONS.


Measurement of the Proton Elastic Form-factors for $Q^2=1$-{GeV}/$c^2$ - 3-{GeV}/$c^2$

Walker, R.C. ; Filippone, B.W. ; Jourdan, J. ; et al.
Phys.Lett.B 224 (1989) 353-353, 1989.
Inspire Record 284687 DOI 10.17182/hepdata.29803

We report measurements of the proton elastic form factors, G E p and G M p , extracted from electron scattering in the range 1⩽ Q 2 ⩽3(GeV/ c ) 2 . The uncertainties are <15% in G E p and <3% in G M p . The values of G E p are larger than indicated by most theoretical parameterizations, The ratio of Pauli and Dirac form factors, Q 2 F 2 p / F 1 p , is lower and demonstrates less Q 2 dependence than most of these parameterizations. Comparisons are made to theoretical models, including those based on perturbative QCD and vector-meson dominance.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Elastic electron Scattering from the Proton at High Momentum Transfer

Arnold, R.G. ; Bosted, Peter E. ; Chang, C.C. ; et al.
Phys.Rev.Lett. 57 (1986) 174, 1986.
Inspire Record 228320 DOI 10.17182/hepdata.3133

We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.

14 data tables

No description provided.

No description provided.

No description provided.

More…

The Reaction $\pi^- p \to K^0 \Lambda^0$ Up to 1334-{MeV}/$c$

Baker, R.D. ; Blissett, J.A. ; Bloodworth, I.J. ; et al.
Nucl.Phys.B 141 (1978) 29-47, 1978.
Inspire Record 130523 DOI 10.17182/hepdata.34954

New data on differential cross sections and polarisation are presented at nine incident momenta up to 1334 MeV/ c . An energy-dependent phase-shift analysis has been made and resonance parameters are given.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Production and decay of sigma(1660)

Apsell, S.P. ; Ford, P. ; Gourevitch, S. ; et al.
Phys.Rev.D 10 (1974) 1419-1429, 1974.
Inspire Record 95499 DOI 10.17182/hepdata.25064

An investigation has been performed of some properties of Σ(1660) produced in the reaction K−p→Σ+(1660)π− at 2.87 GeV/c incident K− momentum. The decay modes observed for this state include Λ(1405)π and Σπ. The spin and parity are measured to be JP=32−. The differential cross section of the Λ(1405)π decay mode is sharply peaked in the forward direction, falling exponentially with a slope of 5.6 ± 0.7 (GeV/c)−2, while the slope for the Σ0π+ decay mode is 2.1 ± 0.4 (GeV/c)−2. The difference in the ratio of backward to total events for the two decay modes also suggests that two Σ(1660)'s exist.

2 data tables

No description provided.

No description provided.


Electromagnetic proton form-factors at squared four momentum transfers between 1-GeV/c**2 and 3-GeV/c**2

Bartel, W. ; Busser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 33 (1970) 245-248, 1970.
Inspire Record 63047 DOI 10.17182/hepdata.45284

Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).

2 data tables

Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).

CONST(NAME=MU) is the magnetic moment.


Pi- photoproduction from deuterium at laboratory energies 600 to 1250 mev

Scheffler, P.E. ; Walden, P.L. ;
Phys.Rev.Lett. 24 (1970) 952-954, 1970.
Inspire Record 62962 DOI 10.17182/hepdata.32219

The differential cross section for the reaction γ+n→π−+p was measured for laboratory photon energies between 600 and 1250 MeV, using a liquid deuterium target. The internal nucleon momentum distribution of the deuteron was used to calculate the major effect of using deuterium as a neutron target. The data show that the amplitude to excite the F15(1688) resonance is small, in agreement with a recent quark-model prediction.

29 data tables

No description provided.

No description provided.

No description provided.

More…