Four-pion final state in anti-p p annihilations at 940 mev/c

Burns, R.R. ; Condon, P.E. ; Donahue, J. ; et al.
Nucl.Phys.B 27 (1971) 109-124, 1971.
Inspire Record 68769 DOI 10.17182/hepdata.33655

Resilts are reported on the four-pion final state from antiproton annihilations in hydrogen in the vicinity of 940 MeV/ c . The cross section for π − π − π + π + is found to be 3.6 mb. Abundant resonance production is observed, with fits indicating that quasi-two-body production constitutes approximately half the four-pion events. The model employed, which includes resonance production and Bose symmetrization, yields excellent fits to mass distributions and angular correlations.

2 data tables

ASSUMING TOTAL AP P CROSS SECTION OF 122 MB. ERRORS INCLUDE SYSTEMATIC UNCERTAINTIES.

ANALYSIS OF 4PION FINAL STATE. FIXED MASS AND WIDTH BREIT-WIGNER RESONANCES AND BACKGROUND FITTED TO DATA. CROSS SECTIONS CALCULATED BY PDG (COMPILATION PDG3). ERROR GIVEN IS SCATTER FROM VARIOUS FITS.


MEASUREMENT OF THE ASYMMETRY OF ELASTIC PION - PROTON SCATTERING AT 1.4-GeV/c TO 2.1-GeV/c MOMENTA

Budkovsky, P.E. ; Dobrov, V.M. ; Zhurkin, V.V. ; et al.
90-97, 1985.
Inspire Record 214097 DOI 10.17182/hepdata.40129

None

1 data table

No description provided.


Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

2 data tables

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.

Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).


Measurement of the magnetic form factor of the neutron

Markowitz, P. ; Finn, J.M. ; Anderson, B.D. ; et al.
Phys.Rev.C 48 (1993) R5-R9, 1993.
Inspire Record 363009 DOI 10.17182/hepdata.26000

The H2(e,e’n)1H quasielastic cross section was measured at Q2 values of 0.109, 0.176, and 0.255 (GeV/c)2. The neutron detection efficiency was determined by the associated particle technique with the H2(γ,pn) reaction for each of the three neutron kinetic energies. These H2(e,e’n) measurements of the coincidence cross sections are the first at low Q2. The cross sections are sensitive primarily to the neutron magnetic form factor GMn at these kinematics. The extracted GMn values have smaller uncertainties than previous data and are consistent with the dipole parametrization at the two higher momentum transfers; at the lowest momentum transfer, the value of GMn is ∼10% higher than the dipole value.

1 data table

No description provided.


Two-body disintegration of the deuteron with 0.8-GeV to 1.8-GeV photons

Freedman, S.J. ; Geesaman, D.F. ; Gilman, Ronald A. ; et al.
Phys.Rev.C 48 (1993) 1864-1878, 1993.
Inspire Record 365233 DOI 10.17182/hepdata.26023

The differential cross section for the reaction H2(γ,p)n has been measured at several center-of-mass angles ranging from 50° to 143° for photon energies between 0.8 and 1.8 GeV. The experiment was performed at the SLAC-NPAS facility with the use of the 1.6 GeV/c spectrometer to detect the high energy protons produced by a bremsstrahlung beam directed at a liquid deuterium target. Contributions from concurrent disintegration by the residual electron beam were determined by measuring the proton yield without the Cu photon radiator. At angles not very far from 90°, the energy dependence of the cross sections is consistent with predictions of scaling using counting rules for constituent quarks. At least one theoretical calculation based on a meson-baryon picture of the reaction is able to reproduce the magnitude and energy dependence of the 90° cross section. The angular distribution exhibits a large enhancement at backward angles at the higher energies.

1 data table

THE QUOTED ERRORS ARE STATISTICAL ONLY.


Measurement of the anti-p p ---> anti-lambda Lambda and anti-p p ---> Antisigma0 Lambda + c.c. reactions at 1.726-GeV/c and 1.771-GeV/c

Barnes, P.D. ; Franklin, G. ; Quinn, B. ; et al.
Phys.Rev.C 54 (1996) 2831-2842, 1996.
Inspire Record 433023 DOI 10.17182/hepdata.25800

Interest in the production of hyperon-antihyperon pairs following antiproton-proton annihilation stems largely from attempts to understand the nature of flavor production. To date the major focus of both the experimental and the theoretical effort has been on the p¯p→Λ¯Λ reaction. In this paper, we present data on the complementary channels p¯p→Σ¯0Λ and p¯p→Λ¯Σ0. Events from the kinematically similar p¯p→Λ¯Λ reaction were obtained in parallel. The procedure to distinguish these three separate reactions is described and results for all channels are presented. These include the total and differential cross sections, hyperon polarizations, and spin correlation coefficients. Data were obtained at incident antiproton lab momenta of 1.726 and 1.771 GeV/c which correspond to excess kinetic energies in the p¯p→Λ¯Σ0+c.c. reaction of 26 and 40 MeV, respectively, above threshold. Comparisons are made to earlier work at similar excess energies in the p¯p→Λ¯Λ channel. The low-energy regime has been highlighted in this experiment to reduce the complexity in the theoretical analysis. © 1996 The American Physical Society.

7 data tables

No description provided.

Axis error includes +- 2.3/2.3 contribution.

Axis error includes +- 2.3/2.3 contribution.

More…

Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


Pionic fusion to a halo state, the d(alpha,Li-6*)pi0 reaction studied close to threshold.

Andersson, M. ; Bargholtz, C. ; Fransson, K. ; et al.
Phys.Lett.B 481 (2000) 165-170, 2000.
Inspire Record 529623 DOI 10.17182/hepdata.28018

The d( α , 6 Li ∗ 3.56 ) π 0 reaction has been studied at E c.m. =1.2 and 1.9 MeV above threshold with an alpha-particle beam incident on a deuterium cluster-jet target in CELSIUS. Complete differential cross sections were measured at both energies, integrated to σ =228±6+70 nb and 141±12+42 nb respectively. Observed large anisotropies are discussed in relation to the cluster structure of the 6 Li ∗ halo.

1 data table

The excited LI6* level has E=3.56 mev (at the highest beam energy the second T=1 state in LI6 at 5.37 mev is possible to populate).


Isospin resolved double pion production in the reaction p + d --> He-3 + 2pi.

Andersson, M. ; Bargholtz, C. ; Fransson, K. ; et al.
Phys.Lett.B 485 (2000) 327-333, 2000.
Inspire Record 532724 DOI 10.17182/hepdata.28016

Neutral and charged two-pion production in p+d→ 3 He+2 π reactions has been studied at CELSIUS at a proton beam energy of 477 MeV. The total cross section for double pion production is 0.22±0.03 μ b. The ratio of the cross sections for the production of charged pion pairs with isospin T =1 and T =0 was determined to be σ ( π + π − ; T =1)/ σ ( π + π − ; T =0)=1.4±0.4.

1 data table

(I=1, I=0) stands for isospin of PI+ PI- system.


Cross section measurement of charged pion photoproduction from hydrogen and deuterium.

The Jefferson Lab Hall A collaboration Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.Lett. 91 (2003) 022003, 2003.
Inspire Record 601768 DOI 10.17182/hepdata.31722

We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams.

1 data table

Differential cross section at THETA(CM) = 90 degrees.