Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Compton scattering cross section on the proton at high momentum transfer.

The Hall A collaboration Danagoulian, A. ; Mamyan, V.H. ; Roedelbronn, M. ; et al.
Phys.Rev.Lett. 98 (2007) 152001, 2007.
Inspire Record 743383 DOI 10.17182/hepdata.31472

Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

4 data tables

Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.

More…

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2

The Jefferson Lab F(pi)-2 collaboration Horn, T. ; Aniol, K. ; Arrington, J. ; et al.
Phys.Rev.Lett. 97 (2006) 192001, 2006.
Inspire Record 721062 DOI 10.17182/hepdata.31560

The H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.

3 data tables

Separated cross sections at mean Q**2 of 1.60 GeV**2.

Separated cross sections at mean Q**2 of 2.45 GeV**2.

Extracted values of the charged pion form-factor. Errors are the statistical and experimental systematics combined in quadrature.


Cross section measurements of charged pion photoproduction in hydrogen and deuterium from 1.1-GeV to 5.5-GeV.

The Jefferson Lab Hall A & Jefferson Lab E94-104 collaborations Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.C 71 (2005) 044603, 2005.
Inspire Record 659852 DOI 10.17182/hepdata.31680

The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.

14 data tables

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.

More…

Cross section measurement of charged pion photoproduction from hydrogen and deuterium.

The Jefferson Lab Hall A collaboration Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.Lett. 91 (2003) 022003, 2003.
Inspire Record 601768 DOI 10.17182/hepdata.31722

We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams.

1 data table

Differential cross section at THETA(CM) = 90 degrees.


Measurements of single diffraction at s**(1/2) = 630-GeV: Evidence for a nonlinear alpha(t) of the Pomeron

The UA8 collaboration Brandt, A. ; Erhan, S. ; Kuzucu, A. ; et al.
Nucl.Phys.B 514 (1998) 3-44, 1998.
Inspire Record 449347 DOI 10.17182/hepdata.32682

We report measurements of the inclusive differential cross section for the single-diffractive reactions: p + pbar --> p + X and p + pbar --> X + pbar at sqrt(s) = 630 GeV, in the momentum transfer range, 0.8 < -t < 2.0 GeV^2 and final state Feynman-x > 0.90. Based on the assumption of factorization, several new features of the Pomeron Flux Factor are determined from simultaneous fits to our UA8 data and lower energy data from the CHLM collaboration at the CERN-Intersecting Storage Rings. Prominent among these is that the effective Pomeron Regge trajectory requires a term quadratic in t, with coefficient, a'' = 0.079 +- 0.012 GeV^{-4}. We also show that the data require a Pomeron-proton cross section that first decreases with increasing diffractive mass (corresponding to the PPR term in the triple-Regge expansion) and then increases at larger mass (the PPP term), similar to real particle total cross sections. We measure the product, (K x sigma0) = 0.72 +- 0.10 mb/GeV^2, where K is the normalization constant of the Pomeron Flux Factor in the proton and sigma0 is the scale constant in the Pomeron-proton total cross section. Finally, we report the occurence of ``beam jets'' in the Pomeron direction in the rest frame of the diffractive system.

5 data tables

Single diffractive cross sections.

Single diffractive sdig/dt for X > 0.95.

The average energy flow event in the C.M. frame of the system X for different values of S prime (the invariant Squark mass of the X system).

More…

Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

2 data tables

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.

Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).


Measurement of Elastic electron - Neutron Cross-Sections Up to Q**2 = 10-(GeV/c)**2

Rock, Stephen ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 49 (1982) 1139, 1982.
Inspire Record 179135 DOI 10.17182/hepdata.20575

The elastic electron-neutron cross section has been measured at four-momentum transfers squared (Q2) of 2.5, 4.0, 6.0, 8.0, and 10.0 (GeV/c)2 with use of a deuterium target and detection of the scattered electrons at 10°. The ratio of neutron to proton elastic cross sections decreases with Q2. At high Q2 this trend is inconsistent with the dipole law, form-factor scaling, and many vector dominance models, although it is consistent with some parton models.

2 data tables

No description provided.

No description provided.


Measurement of Elastic electron Scattering from the Proton at High Momentum Transfer

Arnold, R.G. ; Bosted, Peter E. ; Chang, C.C. ; et al.
Phys.Rev.Lett. 57 (1986) 174, 1986.
Inspire Record 228320 DOI 10.17182/hepdata.3133

We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of $\bar{p} p$ and $p p$ Elastic Scattering With $0.6-{\rm GeV}^ < t < 2.1-{\rm GeV}^2$ at the {CERN} {ISR}

Erhan, S. ; Smith, A.M. ; Meritet, L. ; et al.
Phys.Lett.B 152 (1985) 131-134, 1985.
Inspire Record 206289 DOI 10.17182/hepdata.30431

p p and pp elastic scattering differential cross sections are presented for momentum transfer 0.6< t <2.1 GeV 2 and √ s = 53 GeV. Measurements were made in the same apparatus at the CERN Intersecting Storage Rings. The p p and pp results are in statistical agreement with one another over the entire t range, although the point at t =1.32 GeV 2 is 1.5 σ above the pp data. The p p points appear to have the same shape as the predictions of Donnachie and Landshoff but are significantly lower in magnitude for 0.9< t <1.5 GeV 2 .

1 data table

No description provided.