The production of the Sigma+ hyperon through the pp->K+nSigma+ reaction has been investigated at four energies close to threshold, 1.826, 1.920, 1.958, and 2.020 GeV. At low energies, correlated K+pi+ pairs can only originate from Sigma+ production so that their measurement allows the total cross section for the reaction to be determined. The results obtained are completely consistent with the values extracted from the study of the K+-proton correlation spectra obtained in the same experiment. These spectra, as well as the inclusive K+ momentum distributions, also provide conservative upper limits on the Sigma+ production rates. The measurements show a Sigma+ production cross section that varies roughly like phase space and, in particular, none of the three experimental approaches used supports the anomalously high near-threshold pp->K+ nSigma+ total cross section previously reported [T. Rozek et al., Phys. Lett. B 643, 251 (2006)].
The K+ double-differential cross section at each of the 5 beam energies intgerated over momentum bins of width +- 12 MeV/c. Note the errors do not include the 7 PCT systematic uncertainty coming from the normalization.
Total cross section for the P P --> K+ P LAMBDA.
Total cross section for the P P --> K+ P SIGMA0.
An analysis of inclusive pion production in proton-beryllium collisions at 6.4, 12.3, and 17.5 GeV/c proton beam momentum has been performed. The data were taken by Experiment 910 at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. The differential $\pi^+$ and $\pi^-$ production cross sections ($d^2\sigma/dpd\Omega$) are measured up to 400 mRad in $\theta_{\pi}$ and up to 6 GeV/c in $p_{\pi}$. The measured cross section is fit with a Sanford-Wang parameterization.
Pion production cross section for 6.4 GeV incident protons.
Pion production cross section for 6.4 GeV incident protons.
Pion production cross section for 6.4 GeV incident protons.
Inclusive production in proton–proton collisions has been measured at a beam energy of 2.16 GeV using the COSY-ANKE magnetic spectrometer. The resulting spectrum, as well as those corresponding to and correlated pairs, can all be well described using consistent values of the total cross sections for the , , and reactions. While the resulting values for Λ and production are in good agreement with world data, our value for the total production cross section, at an excess energy of , could only be reconciled with other recently published data if there were a highly unusual near threshold behaviour.
Total cross section for the reaction P P --> K+ N SIGMA+.
Total cross section for the reaction P P --> K+ P LAMBDA.
Total cross section for the reaction P P --> K+ P SIGMA0.
The production of K^+ mesons in pA (A = D, C, Cu, Ag, Au) collisions has been investigated at the COoler SYnchrotron COSY-Julich for beam energies T_p = 1.0 - 2.3 GeV. Double differential inclusive pC cross sections at forward angles theta < 12 degrees as well as the target-mass dependence of the K^+ momentum spectra have been measured with the ANKE spectrometer. Far below the free NN threshold at T_{NN}=1.58 GeV the spectra reveal a high degree of collectivity in the target nucleus. From the target-mass dependence of the cross sections at higher energies, the repulsive in-medium potential of K^+ mesons can be deduced. Using pN cross-section parameterisations from literature and our measured pD data we derive a cross-section ratio of sigma(pn -> K^+ X) / sigma(pp -> K^+ X) ~ (3-4).
Double differential cross section for P C --> K+ X obtained in the 1.3 T mode. Errors do not include systematic uncertainties.
Double differential cross section for P C --> K+ X obtained in the 1.6 T mode. Errors do not include systematic uncertainties.
Cross section ratios CU/C and AU/C measured with the 1.3 T mode. Errors include statistical and systematic uncertainties.
Differential cross-sections are presented for the inclusive production of charged pions in the momentum range 0.1 to 1.2 GeV/c in interactions of 12.3 and 17.5 GeV/c protons with Be, Cu, and Au targets. The measurements were made by Experiment 910 at the Alternating Gradient Synchrotron in Brookhaven National Laboratory. The cross-sections are presented as a function of pion total momentum and production polar angle $\theta$ with respect to the beam.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.
Double differential K+ production cross section for forward K+ angles < 12 degs. Statistical errors only.
The invariant cross section for K+ production. Statistical errors only.
Ratio of K+ production cross sections for CU/C and AU/C.
An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.
No description provided.
No description provided.
No description provided.
In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.
No description provided.
The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.
We present measurements of kaon and antiproton production cross sections in the momentum region of 700 MeV/c from 0° to 10° by 28.4-GeV/c protons on complex nuclei. A model to describe the A dependence of these cross sections is discussed and compared with these and other data.
No description provided.
No description provided.
No description provided.
The differential cross section for the reactions γd→pn, γd→π0d, and γd→pX has been measured by using a tagged photon beam in the energy range of dibaryon resonances. The most characteristic feature of the data for γd→pn is a forward nonpeaking angular distribution. This behavior is in complete disagreement with the existing predictions which take into account the dibaryon resonances. A phenomenological analysis is made by slightly modifying the model of the Tokyo group, but no satisfactory result is obtained. The data for γd→π0d at large angles show that the differential cross section decreases exponentially as a function of pion angle. A comparison is made with a Glauber model calculation. The result seems to be rather in favor of the existence of dibaryon resonances, but a clear conclusion is not possible because of a lack of more accurate data. In the process γd→pX, a broad peak due to quasifree pion production is observed, but the limitation of experimental sensitivity does not allow us to have a definite conclusion for the dibaryon resonance of mass 2.23 GeV conjectured by the Saclay group.
No description provided.
No description provided.
FOR ANGLES >16 DEG THE OVERALL UNCERTAINTY IN ABSOLUTE NORMALIZATION IS ABOUT 10%.