The production of neutral K ∗ (890) and ρ 0 mesons was studied in e + e − annihilation at s =29 GeV using the High Resolution Spectrometer at PEP. Differential cross sections are presented as a function of the scaled energy variable z and compared to π 0 and K 0 production. The measured multiplicities are 0.84±0.08 ϱ 0 mesons and 0.57±0.09 K ∗0 (890) mesons per event for a meson momentum greater than 725 MeV/ c . The ratios of vector meson to pseudoscalar meson production for (u,d), s and c quark are compared to predictions of the Lund model.
Data requested from authors.
No description provided.
No description provided.
None
Pt of the leptons is determined relative to the thrust axis. B-DECAY, C-DECAY, C-SECONDARY and BKG are corresponded to fractions of leptons originationg from primary BQ deacy, primary CQ decay, secondary decay, and from background.
Data from the high-resolution spectrometer at PEP have been used to study the inclusive production of φ mesons and F± mesons decaying into φπ±. Fragmentation functions and cross sections are presented and compared to existing data. The total φ cross section at 29 GeV is 40±6 pb. The observed F signal in the region z>0.4, given the assumption that R(F)[R(F)+R(D)]=0.15, corresponds to an F→φπ branching ratio of (3.3±1.1)%. The measured F mass is 1963±3±3 MeV/c2.
No description provided.
No description provided.
WITH THE FOLLOWING ANGLE CUTS ON THE DECAY REGIONS. PHI DECAY - ABS(COS(THETA)) >0.5.
We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.
Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.
Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.
No description provided.
We have studied the production of prompt muons in hadronic events from e+e− annihilation at a center-of-mass energy of 29 GeV with the PEP4-TPC (Time Projection Chamber) detector. The muon p and pt distributions are well described by a combination of bottom- and charm-quark decays, with fitted semimuonic branching fractions of (15.2±1.9±1.2)% and (6.9±1.1±1.1)%, respectively. The muon spectra imply hard fragmentation functions for both b and c quarks, with 〈z(b quark)〉=0.80±0.05±0.05 and 〈z(c quark)〉=0.60±0.06±0.04. We derive neutral-current axial-vector couplings of a(b quark)=-0.9±1.1±0.3 and a(c quark)=1.5±1.5±0.5 from the forward-backward asymmetries.
PT is the transverse momentum of the muon relative to the event thrust axis.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT < 1 GeV/c.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT > 1 GeV/c.
The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.
.
.
.
The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.
Comparison of total tau pair cross section with O(alpha**3) QED prediction.
Corrected for acceptance backgraound, and O(alpha**3) radiative effects.
Forward-backward asymmetry based on fit to angular distributions.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
Extrapolated to full momentum range by Monte-Carlo.
Statistical errors only.
No description provided.
Inclusive production cross sections for photons and π0's ine+e− annihilation at a center of mass energy of 29 GeV have been measured. The π0 production spectrum agrees with a corresponding measurement for π±. The ratio of the π0 inclusive rate to the average for π± is 0.92±0.14. The fractions of the total energy carried by photons and π0's are 0.244±0.016 and 0.217±0.033, respectively. The fraction of total energy carried by all stable hadrons, prompt leptons and photons is determined to be 0.938±0.045, leaving 0.062±0.045 for neutrinos.
No description provided.
No description provided.
The distribution of particles in three-jet events is compared with the predictions of three fragmentation models currently in use: the Lund string model, the Webber cluster model, and an independent fragmentation model. The Lund model and, to a certain extent, the Webber model provide reasonable descriptions of the data. The independent fragmentation model does not describe the distribution of particles at large angles with respect to the jet axes. The results provide evidence that the sources of hadrons are Lorentz boosted with respect to the overall c.m.
No description provided.