We have measured the electron, muon, and charged-hadron pair production rates in two-phonon interactions for invariant masses above 2.0 GeV over a large of momentum transfer. The cross sections for electron and muon pairs show good agreement with the QED predictions at both small and large momentum transfer. The observed rate of hadron production is less than 6% of the rate that QED predicts for point-like hadrons, consistent with recent leading-order QCD calculations.
LOW Q**2 CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS IN THE INVARIANT MASS FOR MUON AND ELECTRON PAIRS IN THE UNTAGGED, LOW Q**2 REGION.
HIGH Q**2 CROSS SECTIONS.
The χ 1 ++ (3507) and the χ 2 ++ (3553) states have been observed in the Goliath spectrometer at the CERN SPS in 185 GeV/ c π − -Be collisions. Their radiative decays contribute 27.7% (for the χ 1 ++ ) and 12.8% (for the χ 2 ++ ) to J ϕ production. At this energy, their cross sections are 65±19 nb and 96±29 nb, respectively
No description provided.
The reactions e + e − → ρη , ρπ , φπ and φη have been studied with the magnetic detector DM1 at DCI in the total energy ranges between 1.4 and 2.18 GeV. The ρη signal is clearly seen. Upper limits for ρπ and φη channels as well as for the OZI forbidden φπ channel.
No description provided.
UPPER LIMIT TO SIG AS EXPLAINED IN SYSTEMATICS.
UPPER LIMIT TO CROSS SECTION AT CL=90 PCT.
The reaction e + e - → e + e - η' has been observed in the JADE experiment at PETRA, by detecting the final state π + π - γ, resulting from the decay η' → γϱ 0 . The cross section was measured at an average beam energy of 17.15 GeV to be σ(e + e - → e + e - η') = 2.2 ± 0.2 (stat.) ± 0.4(syst.) nb, yielding the radiative width Γ η'γγ = 5.0 ± 0.5(stat.) ± 0.9 (syst.) keV.
No description provided.
The inclusive production of π ± mesons in e + e − annihilation has been measured at c.m. energies of 14, 22 and 34 GeV for pion momenta between 0.3 ans 10 GeV/ c . The fraction of pions among the charged hadrons is above 90% at 0.4 GeV/ c and decreases to about 50% at high momenta. The scaled cross sections ( s β ) d σ d x at 14, 22 and 34 GeV as well as the 5.2 GeV data from DASP have a rather similar x dependence. After integration over the x range from 0.2 to 0.6 the cross sections indicate a monotonic decrease with increasing centre-of-mass energy.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.
DATA OF RUNPERIOD 1.
DATA OF RUNPERIOD 2.
R MEASURED IN SCANNING MODE.
None
No description provided.
No description provided.
No description provided.
We have studied the inclusive production of K*±(890) and Y*±(1385) in pp, π+p, and K+p interactions at 147 GeV/c. The experiment used the Fermilab 30-inch hydrogen bubble chamber with the hybrid spectrometer system. Results are based on a sample of 1916 observed KS and 932 observed A. Inclusive cross sections are given for K*± and Y*± production from the three beams, and comparisons are made with experiments at other energies. Feynman-x and transverse-momentum-squared distributions are also calculated. The results suggest that the K*− is entirely produced in the central region, while the K*+ includes a component from beam fragmentation. Comparisons are made with the additive quark model.
No description provided.
No description provided.
Large transverse energy cross sections of 300 GeV/ c pions and protons on hydrogen have been measured with a segmented calorimeter covering the central rapidity region −0.88 < y < 0.67 and 2 π in azimuth. The selected events show large multiplicities and no jet-like event structure. Processes more complicated than the scattering of two constituents appear to dominate these inelastic collisions.
No description provided.
No description provided.
No description provided.
A partial-wave analysis of the K 0 π + π − system from the reaction K − p → K 0 π + π − n has been carried out using data obtained at 8.25 GeV/ c in a high-statistics experiment. A strong signal appears in the 1 + SO + (K ∗ π) wave at the Q 2 mass (≈ 1.4 GeV). The 1 + S0 + (ϱK) wave behaves rather like a background and does not exhibit the characteristics of a resonance. A prominent signal also appears in the 2 + D wave (via K ∗ π and ϱK); it is interpreted as the K ∗ (1430). In the L region (1.6–2.1) GeV, there is evidence for the 3 − K ∗ (1780) while the 2 − wave also gives some contribution.
FULLY CORRECTED CROSS SECTION.
RESONANCE FITS CROSS SECTIONS USING BREIT WIGNER FUNCTION. NOTE THAT FOR THE K*(1780) THE CROSS SECTION DETERMINATION IS STRONGLY DEPENDENT ON THE BACKGROUND ASSUMED WHICH HAS BEEN ONLY SUBTRACTED AT 8.25 GEV.