The production of $D_s^-$ relative to $D_s^+$ as a function of $x_F $ with 600 GeV/c $\Sigma^-$ beam is measured in the interval $0.15 < x_F < 0.7$ by the SELEX (E781) experiment at Fermilab. The integrated charge asymmetries with 600 GeV/c $\Sigma^-$ beam ($0.53\pm0.06$) and $\pi^-$ beam ($0.06\pm0.11$) are also compared. The results show the $\Sigma^-$ beam fragments play a role in the production of $D_s^-$, as suggested by the leading quark model.
Acceptance corrected yields for the SIGMA- beam.
Production asymmetry for the SIGMA- beam.
Integrated asymmetry (with XL > 0.15) for the PI- and SIGMA- beams.
Dijet angular distributions of photoproduction events in which a $D^{*\pm}$ meson is produced in association with one of two energetic jets have been measured with the ZEUS detector at HERA, using an integrated luminosity of 120 pb$^{-1}$. Differential cross sections as a function of the angle between the charm-jet and the proton-beam direction in the dijet rest frame have been measured for samples enriched in direct or resolved photon events. The results are compared with predictions from leading-order parton-shower Monte Carlo models and with next-to-leading-order QCD calculations. The angular distributions show clear evidence for the existence of charm originating from the photon.
The differential cross section DSIG/DXOBS(C=GAMMA) as a function of XOBS(C=GAMMA).
The differential cross section DSIG/DXOBS(C=PROTON) as a function of XOBS(C=PROTON).
The dijet angular distributions as a function of the absolute value of the dijet scattering angle for two XOBS(C=GAMMA) regions separating resolved and direct photon processes.
Double-spin asymmetries in the cross section of electroproduction of $\rho^0$ and $\phi$ mesons on the proton and deuteron are measured at the HERMES experiment. The photoabsorption asymmetry in exclusive $\rho^0$ electroproduction on the proton exhibits a positive tendency. This is consistent with theoretical predictions that the exchange of an object with unnatural parity contributes to exclusive $\rho^0$ electroproduction by transverse photons. The photoabsorption asymmetry on the deuteron is found to be consistent with zero. Double-spin asymmetries in $\rho^0$ and $\phi $ meson electroproduction by quasi-real photons were also found to be consistent with zero: the asymmetry in the case of the $\phi$ meson is compatible with a theoretical prediction which involves $s\bar{s}$ knockout from the nucleon.
The photoabsorption asymmetry A1 for exclusive RHO0 production.
The photoabsorption asymmetry A1 for exclusive PHI electroproduction.
The photoabsorption asymmetry A1 for electroproduction of RHO0 mesons by quasi-real photons.
Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction (Q**2 < 1 GeV**2) integrated over the jet pseudorapidity range -1 to 2.5 in the W(C=GAMMA P) range 95 to 285 GeV.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction (Q**2 < 1 GeV**2) integrated over the jet pseudorapidity range -1 to 2.5 in the W(C=GAMMA P) ranges 95 to 212, and 212 to 285 GeV.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction for the two Q**2 ranges integrated over the jet pseudorapidity range -1to 2.5 in the W(C=GAMMA P) range 164 to 242 GeV.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.
Charmonium production in p – A collisions is a unique tool for the study of the interaction of bound c c states in nuclear matter. It can provide details on the basic features of the resonance formation mechanism and, in particular, on its non-perturbative aspects. In this Letter, we present an experimental study of charmonia and Drell–Yan production in proton–nucleus collisions at 450 GeV/ c . The results are analyzed in the framework of the Glauber model and lead to the values of the nuclear absorption cross-section σ abs pA for J / ψ and ψ ′. Then, we compare the J / ψ absorption in proton–nucleus and sulphur–uranium interactions, using NA38 data. We obtain that, for the J / ψ , σ abs pA and σ abs SU are compatible, showing that no sizeable additional suppression mechanism is present in S–U collisions, and confirming that the anomalous J / ψ suppression only sets in for Pb–Pb interactions.
The J/PSI production cross section times the branching ratio to MU+ MU- pernucleon-nucleon collision for the differential nuclear targets.
The PSI(3685) production cross section times the branching ratio to MU+ MU-per nucleon-nucleon collision for the differential nuclear targets.
The Drell Yan cross section, divided by the mass number A, and multiplied by the isospin correction factors in the mass interval 2.9 to 4.5 GeV.
Fermilab experiment E835 has measured the cross section for the reaction p ̄ p→e + e − at s =11.63, 12.43, 14.40 and 18.22 GeV 2 . From the analysis of the 66 observed events new high-precision measurements of the proton magnetic form factor are obtained.
The measured cross section in the kinematic range defined by COS(THETA).
The proton magnetic form factor calculated assuming the equality of the electric and magnetic form factors.
The proton magnetic form factor calculated assuming a negligible electric contribution.
We report on a measurement of the inclusive cross sections of $\Lambda$ , $\overline\Lambda$ , K 0
Total inclusive hyperon production cross sections for the SIGMA- beam on the Copper target.
Total inclusive hyperon production cross sections for the SIGMA- beam on the Carbon target.
Total inclusive hyperon production cross sections per nucleon for the SIGMA- beam, and the exponent in the cross section parametrization of the form A**POWER.
The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between
Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.
Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.
Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.
The energy spectrum and the cross section of photonuclear interactions of 180 GeV muons in iron were measured at the CERN SPS using prototype modules of the ATLAS hadron calorimeter. The differential
Measured differential cross section for fractional photonuclear muon energy loss.
Total photonuclear cross section which gives best agreement of energy loss with theory. See text of paper for details.