We present a new measurement of the difference between the nucleon strange and antistrange quark distributions from dimuon events recorded by the NuTeV experiment at Fermilab. This analysis is the first to use a complete next to leading order QCD d escription of charm production from neutrino scattering. Dimuon events in neutrino deep inelastic scattering allow direct and independent study of the strange and antistrange content of the nucleon. We find a positive strange asymmetry with a significance of 1.6sigma . We also report a new measurement of the charm mass.
Neutrino forward dimuon cross sections for Y bins 0.32, 0.56 and 0.77 as a function of X for neutrino energy 88.
Neutrino forward dimuon cross sections for Y bins 0.32, 0.56 and 0.77 as a function of X for neutrino energy 174.
Neutrino forward dimuon cross sections for Y bins 0.32, 0.56 and 0.77 as a function of X for neutrino energy 247.
We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.
Measured ET differential cross section of the 1st jet in >= 1 JET plus W < E NU > events.
Measured ET differential cross section of the 2nd jet in >= 2 JET plus W < E NU > events.
Measured ET differential cross section of the 3rd jet in >= 3 JET plus W < E NU > events.
We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
We present the first measurement of the production cross section of a W boson with a single charm quark (c) in p-pbar collisions at sqrt(s)=1.96 TeV, using soft muon tagging of c jets. In a data sample of ~1.8 fb-1, recorded with the CDF II detector at the Fermilab Tevatron, we select events with W+1 or 2 jets. We use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the Wc signal. We measure sigma_{Wc}(p_{Tc}>20 GeV/c, |\eta_c|<1.5)\times BR(W->\ell\nu) = 9.8+/-3.2 pb, in agreement with theoretical expectations.
The measured cross section for leptonic decay of the W.
We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range $2.5 \leq E_\nu \leq 40$ GeV. The significance of this measurement is its precision, $\pm 4$% in $2.5 \leq E_\nu \leq 10$ GeV, and $\pm 2.6$% in $10 \leq E_\nu \leq 40$ GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.
Inclusive muon-neutrino charged current cross section.
Inclusive jet cross sections in Z/gamma^* events, with Z/gamma^* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in ppbar collisions at sqrt{s} = 1.96 TeV with the upgraded Collider Detector at Fermilab in Run II, based on an integrated luminosity of 1.7 fb^-1. The measurements cover the rapidity region | yjet | < 2.1 and the transverse momentum range ptjet > 30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
Total cross section for .GE.1JET.
Total cross section for .GE.2JET.
Total cross section for .GE.3JET.
All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.
J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.
J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.
J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.
Results on charged pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV are presented and compared to data at lower and higher energies. A rapid change of the energy dependence is observed around 30A GeV for the yields of pions and kaons as well as for the shape of the transverse mass spectra. The change is compatible with the prediction that the threshold for production of a state of deconfined matter at the early stage of the collisions is located at low SPS energies.
Transverse mass spectra for pion production in the central rapidity region for collisions at 20 GeV per nucleon.
Transverse mass spectra for pion production in the central rapidity region for collisions at 30 GeV per nucleon.
Transverse mass spectra for kaon production in the central rapidity region for collisions at 20 GeV per nucleon.
The differential and total cross sections for kaon pair production in the pp->ppK+K- reaction have been measured at three beam energies of 2.65, 2.70, and 2.83 GeV using the ANKE magnetic spectrometer at the COSY-Juelich accelerator. These near-threshold data are separated into pairs arising from the decay of the phi-meson and the remainder. For the non-phi selection, the ratio of the differential cross sections in terms of the K-p and K+p invariant masses is strongly peaked towards low masses. This effect can be described quantitatively by using a simple ansatz for the K-p final state interaction, where it is seen that the data are sensitive to the magnitude of an effective K-p scattering length. When allowance is made for a small number of phi events where the K- rescatters from the proton, the phi region is equally well described at all three energies. A very similar phenomenon is discovered in the ratio of the cross sections as functions of the K-pp and K+pp invariant masses and the identical final state interaction model is also very successful here. The world data on the energy dependence of the non-phi total cross section is also reproduced, except possibly for the results closest to threshold.
Total cross sections for the reaction P P --> P P K+ K- reaction in the phi poor and phi rich regions.
Differential cross section as a function of the invariant mass of the K+ K- pair.
Differential cross section as a function of the invariant mass of the K+ P and K- P pair and their ratio.
We report measurements of the exclusive cross section for $e^+e^- \to D \overline D $, where $D=D^0$ or $D^+$, in the center-of-mass energy range from the $D \overline D $ threshold to $5\mathrm{GeV}/c^2$ with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of $673$ $\mathrm{fb}^{-1}$.
Cross section of E+ E- --> D0 DBAR0.
Cross section of E+ E- --> D+ D-.