The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.
No description provided.
The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.
No description provided.
The polarization parameter has been measured for π − p elastic scattering in the backward region at 3.5 GeV/ c incident momentum. The experimental set-up consisted of a polarized target in a spectrometer magnet, hodoscopes and wire spark chambers. Data are presented for the range −0.95< u ⩽−0.19 GeV 2 . An isospin analysis has been carried out to separate the I u = 1 2 and I u = 3 2 contributions.
BACKWARD SCATTERING.
Polarization in π − p elastic scattering, with emphasis over the backward region, has been measured at 2.93 and 3.25 GeV/ c . We observe large changes in polarization compared with existing data above and below these energies. Our data may be useful in determining the properties of resonances and in understanding baryon exchanges.
THESE DATA, TOGETHER WITH THE FORWARD SCATTERING POLARIZATION MEASUREMENTS, ARE TABULATED IN THE RECORD OF P. AUER ET AL., PRL 37, 83 (1976).
The accelerated polarized deuteron beam of Saturn II was used to measure the analyzing power for np elastic scattering at five energies. The left-right asymmetries ε = (L + R)/(L + R) for np and for pp elastic scattering were measured simultaneously by CH 2 − carbon subtraction using one of the beam-line polarimeters. The analyzing power A 00 n 0 (np) is given by the ratio ε np d / ε pp d multiplied by the known analyzing power for pp elastic scattering. Experimental evidence is consistent with the underlying assumption that in the kinetmatic region of the experiment the ratio of the np to pp analyzing powers for scattering of quasifree nucleons in deuterons is the same as for scattering of free neutrons and protons, respectively.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
Polarization in π−p elastic scattering, with emphasis in the region around the secondary dip and also θc.m.=90°, has been measured at 2.93 and 3.25 GeV/c. We observe an interesting sign change in this angular region.
No description provided.
No description provided.
We have measured the polarization for elastic scattering in the reaction π−p→π−p at 2.93 and 3.25 GeV/c using a polarized proton target and multiwire proportional chambers (MWPC's) with emphasis on large-angle scattering. Events were selected by fast scintillation-counter logic. Beam trajectories were measured with four MWPC's and the scattered-particle angles were measured with one or two MWPC's; elastic events were determined by coplanarity and angle-angle correlations. The polarization is in agreement with previous measurements below |t|=2.0 (GeV/c)2, and crosses from negative to positive near the secondary dip in the differential cross section dσdt. In the backward region, an energy dependence appears with the polarization being large and negative at 2.93 GeV/c and consistent with zero at 3.25 GeV/c.
No description provided.
No description provided.