We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.
Data read from graph.. Additional overall systematic error 25%.
Data read from graph.. Additional overall systematic error 25%.. The Q**2 approx 0 datum is deduced from the earlier TASSO paper, Brandelik et al, Phys. Lett. 97B(1980)448, (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1151> RED = 1151 </a>) on rho0 rho0 production.
The cross section for the processe+e−→π0+ anything has been measured at an average center of mass energy of 34.6 GeV for π0 energies between 0.7 and 17 GeV. The angular distribution for π0 energies larger than 2 GeV is of the formdσ/dΩ∼1+Acos2θ, withA=1.2±0.5. The ratio of π0 to π± production in the measured energy range is 2σ(π0)/(σ(π+)+σ(π−))=1.13±0.18
Systematic errors included.
Systematic errors included.
No description provided.
Exclusive production of proton-antiproton pairs by two photon scattering at CM energies between 2.0 GeV and 3.1 GeV has been measured with the TASSO detector at the e + e − storage ring PETRA. The angular distribution is flat within the accepted CM angular range | cos Θ ∗ |⩽0.7 . The integrated cross section (| cos Θ ∗ |⩽0.6) drops from about 4 nb at 2 GeV to less than 0.5 nb above 3 GeV. For the two-photon production of the η c (2984) and its subsequent decay into proton-antiproton the upper limit Γ(η c →γγ)· B (η c → p p )<0.32 keV (95% CL) is found.
No description provided.
No description provided.
UPPER LIMIT FOR THE PRODUCT OF THE ETA/C --> GAMMA GAMMA WIDTH AND THE BRANCHING RATIO OF ETA/C --> P AP IS DETERMINED TO BE 0.32 KEV WITH 90 PCT CL.
D ∗± production via e + e − →D ∗± X has been measured at an average CM energy of 34.4 GeV. The D ∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D ∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D ∗ mesons. The D ∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to | g A c | = 0.89 ± 0.44 for the axial vector coupling of the charm quark.
ASSUMES EQUAL RATES FOR CHARGED AND NEUTRAL D*'S. ONLY CHARGED ARE DETECTED.
DATA PEAKS AT X=0.6 TO 0.8.
ASYMMETRY MEASUREMENT. THETA IS THE ANGLE BETWEEN THE E- AND THE D*.
We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .
Data read from graph.. Errors are the square roots of the number of events.
Data read from graph.. Errors are the square roots of the number of events.
The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilation has been measured at c.m. energies ofW=14, 22 and 34GeV. Using time of flight measurements and Cerenkov counters the full momentum range has been covered. Differential cross sections and total particle yields are given. At particle momenta of 0.4 GeV/c more than 90% of the charged hadrons are pions. With increasing momentum the fraction of pions among the charged hadrons decreases. AtW=34 GeV and a momentum of 5 GeV/c the particle fractions are approximately π±:K±:p,\(\bar p = 0.55:0.3:0.15\). On average an event atW=34 GeV contains 10.3±0.4π±, 2.0±0.2K± and 0.8±0.1p,\(\bar p\). In addition, we present results on baryon correlations using a sample of events where two or more protons and/or antiprotons are observed in the final state.
No description provided.
No description provided.
No description provided.
We present an analysis ofρ0ρ0 production by two photons in theρ0ρ0 invariant mass range from 1.2 to 2.0 GeV. From a study of the angular correlations in the process γγ→ρ0ρ0→π−π+π− we exclude a dominant contribution fromJP=0− or 2− states. The data indicate sizeable contributions fromJP=0+ for four pion massesM4π<1.7 GeV and fromJP=2+ forM4π>1.7 GeV. The data are also well described by a model with isotropic production and uncorrelated isotropic decay of theρ0,s. The cross section stays high below the nominalρ0ρ0 threshold, i.e.M4π<1.5 GeV. The matrix element forρ0ρ0 production is found to decrease steeply with increasingM4π. Upper limits for the couplings of the ι(1440) and Θ(1640) to γγ andρ0ρ0 are given:Γ(ι→γγ)·B(ι→ρ0ρ0)<1.0 keV andΓ(Θ→γγ)
ASSUMING ISOTROPIC RHO0 RHO0 PRODUCTION AND ISOTROPIC RHO DECAY.
CROSS SECTIONS FOR DIFFERENT SPIN-PARITY CONTRIBUTIONS.
We have observed ϱ 0 production in e + e − annihilation to hadrons at high energies. The differential cross section at a centre of mass energy W , of 34 GeV, is presented. In the range 0.2< x < 0.7, we measure 0.33 ± 0.06 (stat.) ± 0.07 (syst.), 0.22 ± 0.06 ± 0.05 and 0.22 ± 0.02 ± 0.05 ϱ 0 /event at W = 14, 22 and 34 GeV respectively.
No description provided.
No description provided.
INTEGRATION OVER RESTRICTED X RANGE.
A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.
No description provided.
No description provided.